📄 rfc1467.txt
字号:
marks whose relevance will become apparent below). The NSFNET/ANSNET routing database includes only those networks that meet the NSF Acceptable Use Policy (AUP) or the ANSNET CO+RE AUP. There are a number of networks connected to the Internet that do not meet these criteria. Although they are not in the NSFNET/ANSNET routing database, they are in the forwarding tables of a number of network providers. Currently, the number of networks that are connected to other known service providers but are not in the NSFNET/ANSNET routing database is significantly smaller than (less than 25% of) the number that are in the NSFNET/ANSNET database. There is no estimate available for the rate of growth of the number of such non-NSFNET/ANSNET networks. It is assumed here that the growth rate of these networks is approximately the same as that of AUP networks in the NSFNET/ANSNET routing database. Analysis of the more than 13K networks in the NSFNET/ANSNET routing database, as well as the allocated but unconnected networks, suggests that CIDR deployment should have a significant impact on the number of forwarding table entries that any router needs to maintain, and its rate of growth. However, an in-depth study was begun at the July 1993 meeting of the BGP Deployment Working Group of the IETF [5] to (among other goals) evaluate the impact of CIDR on the growth rate of router forwarding tables.Topolcic [Page 5]RFC 1467 Status of CIDR Deployment in the Internet August 19936. Capacity of deployed networks The following paragraphs describe the current occupancy of the forwarding tables of the routers of several transit network providers and their expected capacities and an estimate of the time when that capacity would be reached if the growth rate were to continue as today. This list is a subset of all relevant providers, but is considered approximately representative of the situation of other network providers. It is shown in alphabetical order. ALTERNET nodes are Cisco routers, and currently carry approximately 11K to 12K routes, both AUP and non-AUP. With their current configuration, they have enough memory so that they are expected to support up to approximately 35K routes. If the rate at which the number of these routes is expected to grow is approximately the same as the rate that the NSFNET/ANSNET policy routing database is growing, then this number may be reached in late 1994. However, if the growth rate continues unchecked, it is expected that the processing capacity of the routers will be surpassed before their memory is exhausted. It is expected that CIDR will be in place long before this point is reached. All ANSNET routers have recently been upgraded to AIX 3.2. This version supports up to 12K networks. These routers currently carry only the active networks in the NSFNET/ANSNET routing database. It is anticipated that the next version of router code will be deployed before September 1993, the projected date for when there will be 12K active networks. This version will support 25K active networks. Although there are no current plans for a version of router code that supports more than 25K networks, it is believed that CIDR will help this situation. EBONE nodes are Cisco routers. They currently carry approximately 10K to 11K routes. With their current configuration, they may be able to support approximately 40K routes. However, the number of paths may be very relevant. The memory required for the BGP table (rather than the forwarding table) is a function of the number of paths. If a new transatlantic link were to be added, EBONE could receive all the North American routes through it. This would add a new set of paths. Each such transatlantic link would increase the memory required by approximately 20%. Due to the network topology between North America and Europe, new transatlantic links tend to result in new paths, and therefore significant memory requirements. It is very difficult to predict the addition of future transatlantic links because they result from business or political requirements, not bandwidth requirements.Topolcic [Page 6]RFC 1467 Status of CIDR Deployment in the Internet August 1993 ESNET uses Cisco routers. However, it is already in trouble, but not because of the size of the forwarding tables. The problem is its need to maintain considerable configuration information describing which networks it should or should not accept from its neighbors, and the fact that this information must be stored in a non-volatile memory of limited size. CIDR aggregation is expected to help this problem. Also, ESNET plans to deploy BGP-4 and CIDR only after it is in a full release, so does not plan to participate in the initial BGP-4 deployment. ESNET will upgrade their nodes to Cisco CSC-4's in the meantime. All SPRINTLINK and ICM nodes have recently been upgraded to Cisco CSC-4 routers with 16MB of memory. They will carry full routing, including not only the routes that the NSFNET/ANSNET carries, but also routes to networks that do not comply with the NSF or CO+RE AUPs. The SPRINT routers currently carry approximately 11K to 12K routes, and it is expected that they will be able to support up to approximately 25K routes, as currently configured. The 25K announced network point may be reached in approximately mid-1994. Again, it is expected that CIDR deployment will have a significant impact on this growth rate, well before this time.7. Acknowledgements This report contains information from a number of sources, including vendors, operators, researchers, and organizations that foster cooperation in the Internet community. Specific organizations include the Intercontinental Engineering and Planning Group (IEPG), the BGP-4 Deployment Working Group of the IETF, the Federal Networking Council (FNC), and the FNC Engineering and Planning Group (FEPG). Specific individuals include, in alphabetical order, Arun Arunkumar, Tony Bates, Mary Byrne, Bob Collet, Mike Craren, Dennis Ferguson, Tony Hain, Elise Gerich, Mark Knopper, John Krawczyk, Tony Li, Peter Lothberg, Andrew Partan, Gary Rucinski, Frank Solensky, and Jessica Yu. This report would not have been possible without the willingness of these people to make their information public for the good of the community.8. References [1] Gerich, E., "Guidelines for Management of IP Address Space", RFC 1366, Merit, October 1992. [2] Gerich, E., "Guidelines for Management of IP Address Space", RFC 1466, Merit, May 1993. [3] Topolcic, C., "Schedule for IP Address Space Management Guidelines", RFC 1367, CNRI, October 1992.Topolcic [Page 7]RFC 1467 Status of CIDR Deployment in the Internet August 1993 [4] Fuller, V. et al, "Classless Inter-Domain Routing (CIDR): an Address Assignment and Aggregation Strategy", working draft obsoleting RFC 1338, BARRNet, February 1993. [5] Yu, J., "Minutes of the BGP Deployment Working Group (BGPDEPL)", MERIT, July 1993. [6] Solensky, F., Internet Growth Charts, "big-internet" mailing list, munnari.oz.au:big-internet/nsf-netnumbers-<yymm>.ps9. Other relevant documents Huitema, C., "IAB Recommendation for an Intermediate Strategy to Address the Issue of Scaling", RFC 1481, Internet Architecture Board, July 1993. Knopper, M., "Minutes of the NSFNET Regional Techs Meeting", working draft, MERIT, June 1993. Knopper, M., and Richardson, S., " Aggregation Support in the NSFNET Policy-Based Routing Database", RFC 1482, MERIT, June 1993. Topolcic, C., "Notes of BGP-4/CIDR Coordination Meeting of 11 March 93", working draft, CNRI, March 1993. Rekhter, Y., and Topolcic, C., "Exchanging Routing Information Across Provider/Subscriber Boundaries in the CIDR Environment", working draft, IBM Corp., CNRI, April 1993. Rekhter, Y., and Li, T., "An Architecture for IP Address Allocation with CIDR", working draft, IBM Corp., cisco Systems, February 1993. Gross, P., and P. Almquist, "IESG Deliberations on Routing and Addressing", RFC 1380, IESG, November 1992.Topolcic [Page 8]RFC 1467 Status of CIDR Deployment in the Internet August 199310. Security Considerations Security issues are not discussed in this memo.11. Author's Address Claudio Topolcic Corporation for National Research Initiatives 895 Preston White Drive, Suite 100 Reston, VA 22091 Phone: (703) 620-8990 EMail: topolcic@CNRI.Reston.VA.USTopolcic [Page 9]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -