📄 rfc2756.txt
字号:
Network Working Group P. VixieRequest for Comments: 2756 ISCCategory: Experimental D. Wessels NLANR January 2000 Hyper Text Caching Protocol (HTCP/0.0)Status of this Memo This memo defines an Experimental Protocol for the Internet community. It does not specify an Internet standard of any kind. Discussion and suggestions for improvement are requested. Distribution of this memo is unlimited.Copyright Notice Copyright (C) The Internet Society (2000). All Rights Reserved.Abstract This document describes HTCP, a protocol for discovering HTTP caches and cached data, managing sets of HTTP caches, and monitoring cache activity. This is an experimental protocol, one among several proposals to perform these functions.1. Definitions, Rationale and Scope 1.1. HTTP/1.1 (see [RFC2616]) permits the transfer of web objects from "origin servers," possibly via "proxies" (which are allowed under some circumstances to "cache" such objects for subsequent reuse) to "clients" which consume the object in some way, usually by displaying it as part of a "web page." HTTP/1.0 and later permit "headers" to be included in a request and/or a response, thus expanding upon the HTTP/0.9 (and earlier) behaviour of specifying only a URI in the request and offering only a body in the response. 1.2. ICP (see [RFC2186]) permits caches to be queried as to their content, usually by other caches who are hoping to avoid an expensive fetch from a distant origin server. ICP was designed with HTTP/0.9 in mind, such that only the URI (without any headers) is used when describing cached content, and the possibility of multiple compatible bodies for the same URI had not yet been imagined.Vixie & Wessels Experimental [Page 1]RFC 2756 Hyper Text Caching Protocol (HTCP/0.0) January 2000 1.3. This document specifies a Hyper Text Caching Protocol (HTCP) which permits full request and response headers to be used in cache management, and expands the domain of cache management to include monitoring a remote cache's additions and deletions, requesting immediate deletions, and sending hints about web objects such as the third party locations of cacheable objects or the measured uncacheability or unavailability of web objects.2. HTCP Protocol 2.1. All multi-octet HTCP protocol elements are transmitted in network byte order. All RESERVED fields should be set to binary zero by senders and left unexamined by receivers. Headers must be presented with the CRLF line termination, as in HTTP. 2.2. Any hostnames specified should be compatible between sender and receiver, such that if a private naming scheme (such as HOSTS.TXT or NIS) is in use, names depending on such schemes will only be sent to HTCP neighbors who are known to participate in said schemes. Raw addresses (dotted quad IPv4, or colon-format IPv6) are universal, as are public DNS names. Use of private names or addresses will require special operational care. 2.3. HTCP messages may be sent as UDP datagrams, or over TCP connections. UDP must be supported. HTCP agents must not be isolated from NETWORK failures and delays. An HTCP agent should be prepared to act in useful ways when no response is forthcoming, or when responses are delayed or reordered or damaged. TCP is optional and is expected to be used only for protocol debugging. The IANA has assigned port 4827 as the standard TCP and UDP port number for HTCP. 2.4. A set of configuration variables concerning transport characteristics should be maintained for each agent which is capable of initiating HTCP transactions, perhaps with a set of per-agent global defaults. These variables are: Maximum number of unacknowledged transactions before a "failure" is imputed. Maximum interval without a response to some transaction before a "failure" is imputed. Minimum interval before trying a new transaction after a failure.Vixie & Wessels Experimental [Page 2]RFC 2756 Hyper Text Caching Protocol (HTCP/0.0) January 2000 2.5. An HTCP Message has the following general format: +---------------------+ | HEADER | tells message length and protocol versions +---------------------+ | DATA | HTCP message (varies per major version number) +---------------------+ | AUTH | optional authentication for transaction +---------------------+ 2.6. An HTCP/*.* HEADER has the following format: +0 (MSB) +1 (LSB) +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 0: | LENGTH | + + + + + + + + + + + + + + + + + 2: | LENGTH | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 2: | MAJOR | MINOR | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LENGTH is the message length, inclusive of all header and data octets, including the LENGTH field itself. This field will be equal to the datagram payload size ("record length") if a datagram protocol is in use, and can include padding, i.e., not all octets of the message need be used in the DATA and AUTH sections. MAJOR is the major version number (0 for this specification). The DATA section of an HTCP message need not be upward or downward compatible between different major version numbers. MINOR is the minor version number (0 for this specification). Feature levels and interpretation rules can vary depending on this field, in particular RESERVED fields can take on new (though optional) meaning in successive minor version numbers within the same major version number. 2.6.1. It is expected that an HTCP initiator will know the version number of a prospective HTCP responder, or that the initiator will probe using declining values for MINOR and MAJOR (beginning with the highest locally supported value) and locally cache the probed version number of the responder. 2.6.2. Higher MAJOR numbers are to be preferred, as are higher MINOR numbers within a particular MAJOR number.Vixie & Wessels Experimental [Page 3]RFC 2756 Hyper Text Caching Protocol (HTCP/0.0) January 2000 2.7. An HTCP/0.* DATA has the following structure: +0 (MSB) +1 (LSB) +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 0: | LENGTH | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 2: | OPCODE | RESPONSE | RESERVED |F1 |RR | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 4: | TRANS-ID | + + + + + + + + + + + + + + + + + 6: | TRANS-ID | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 8: | | / OP-DATA / / / +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LENGTH is the number of octets of the message which are reserved for the DATA section, including the LENGTH field itself. This number can include padding, i.e., not all octets reserved by LENGTH need be used in OP-DATA. OPCODE is the operation code of an HTCP transaction. An HTCP transaction can consist of multiple HTCP messages, e.g., a request (sent by the initiator), or a response (sent by the responder). RESPONSE is a numeric code indicating the success or failure of a transaction. It should be set to zero (0) by requestors and ignored by responders. Each operation has its own set of response codes, which are described later. The overall message has a set of response codes which are as follows: 0 authentication wasn't used but is required 1 authentication was used but unsatisfactorily 2 opcode not implemented 3 major version not supported 4 minor version not supported (major version is ok) 5 inappropriate, disallowed, or undesirable opcode The above response codes all indicate errors and all depend for their visibility on MO=1 (as specified below). RR is a flag indicating whether this message is a request (0) or response (1).Vixie & Wessels Experimental [Page 4]RFC 2756 Hyper Text Caching Protocol (HTCP/0.0) January 2000 F1 is overloaded such that it is used differently by requestors than by responders. If RR=0, then F1 is defined as RD. If RR=1, then F1 is defined as MO. RD is a flag which if set to 1 means that a response is desired. Some OPCODEs require RD to be set to 1 to be meaningful. MO (em-oh) is a flag which indicates whether the RESPONSE code is to be interpreted as a response to the overall message (fixed fields in DATA or any field of AUTH) [MO=1] or as a response to fields in the OP-DATA [MO=0]. TRANS-ID is a 32-bit value which when combined with the initiator's network address, uniquely identifies this HTCP transaction. Care should be taken not to reuse TRANS-ID's within the life-time of a UDP datagram. OP-DATA is opcode-dependent and is defined below, per opcode. 2.8. An HTCP/0.0 AUTH has the following structure: +0 (MSB) +1 (LSB) +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 0: | LENGTH | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 2: | SIG-TIME | + + + + + + + + + + + + + + + + + 4: | SIG-TIME | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 6: | SIG-EXPIRE | + + + + + + + + + + + + + + + + + 8: | SIG-EXPIRE | +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ 10: | | / KEY-NAME / / / +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ n: | | / SIGNATURE / / / +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+Vixie & Wessels Experimental [Page 5]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -