📄 rfc1585.txt
字号:
Network Working Group J. MoyRequest for Comments: 1585 Proteon, Inc.Category: Informational March 1994 MOSPF: Analysis and ExperienceStatus of this Memo This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Abstract This memo documents how the MOSPF protocol satisfies the requirements imposed on Internet routing protocols by "Internet Engineering Task Force internet routing protocol standardization criteria" ([RFC 1264]). Please send comments to mospf@gated.cornell.edu.1. Summary of MOSPF features and algorithms MOSPF is an enhancement of OSPF V2, enabling the routing of IP multicast datagrams. OSPF is a link-state (unicast) routing protocol, providing a database describing the Autonomous System's topology. IP multicast is an extension of LAN multicasting to a TCP/IP Internet. IP Multicast permits an IP host to send a single datagram (called an IP multicast datagram) that will be delivered to multiple destinations. IP multicast datagrams are identified as those packets whose destinations are class D IP addresses (i.e., addresses whose first byte lies in the range 224-239 inclusive). Each class D address defines a multicast group. The extensions required of an IP host to participate in IP multicasting are specified in "Host extensions for IP multicasting" ([RFC 1112]). That document defines a protocol, the Internet Group Management Protocol (IGMP), that enables hosts to dynamically join and leave multicast groups. MOSPF routers use the IGMP protocol to monitor multicast group membership on local LANs through the sending of IGMP Host Membership Queries and the reception of IGMP Host Membership Reports. A MOSPF router then distributes this group location information throughout the routing domain by flooding a new type of OSPF link state advertisement, the group-membership-LSA (type 6). This in turn enables the MOSPF routers to most efficiently forward a multicastMoy [Page 1]RFC 1585 MOSPF: Analysis and Experience March 1994 datagram to its multiple destinations: each router calculates the path of the multicast datagram as a shortest-path tree whose root is the datagram source, and whose terminal branches are LANs containing group members. A separate tree is built for each [source network, multicast destination] combination. To ease the computational demand on the routers, these trees are built "on demand", i.e., the first time a datagram having a particular combination of source network and multicast destination is received. The results of these "on demand" tree calculations are then cached for later use by subsequent matching datagrams. MOSPF is meant to be used internal to a single Autonomous System. When supporting IP multicast over the entire Internet, MOSPF would have to be used in concert with an inter-AS multicast routing protocol (something like DVMRP would work). The MOSPF protocol is based on the work of Steve Deering in [Deering]. The MOSPF specification is documented in [MOSPF].1.1. Characteristics of the multicast datagram's path As a multicast datagram is forwarded along its shortest-path tree, the datagram is delivered to each member of the destination multicast group. In MOSPF, the forwarding of the multicast datagram has the following properties: o The path taken by a multicast datagram depends both on the datagram's source and its multicast destination. Called source/destination routing, this is in contrast to most unicast datagram forwarding algorithms (like OSPF) that route based solely on destination. o The path taken between the datagram's source and any particular destination group member is the least cost path available. Cost is expressed in terms of the OSPF link-state metric. o MOSPF takes advantage of any commonality of least cost paths to destination group members. However, when members of the multicast group are spread out over multiple networks, the multicast datagram must at times be replicated. This replication is performed as few times as possible (at the tree branches), taking maximum advantage of common path segments. o For a given multicast datagram, all routers calculate an identical shortest-path tree. This is possible since the shortest-path tree is rooted at the datagram source, insteadMoy [Page 2]RFC 1585 MOSPF: Analysis and Experience March 1994 of being rooted at the calculating router (as is done in the unicast case). Tie-breakers have been defined to ensure that, when several equal-cost paths exist, all routers agree on which single path to use. As a result, there is a single path between the datagram's source and any particular destination group member. This means that, unlike OSPF's treatment of regular (unicast) IP data traffic, there is no provision for equal-cost multipath. o While MOSPF optimizes the path to any given group member, it does not necessarily optimize the use of the internetwork as a whole. To do so, instead of calculating source-based shortest-path trees, something similar to a minimal spanning tree (containing only the group members) would need to be calculated. This type of minimal spanning tree is called a Steiner tree in the literature. For a comparison of shortest-path tree routing to routing using Steiner trees, see [Deering2] and [Bharath-Kumar]. o When forwarding a multicast datagram, MOSPF conforms to the link-layer encapsulation standards for IP multicast datagrams as specified in "Host extensions for IP multicasting" ([RFC 1112]), "Transmission of IP datagrams over the SMDS Service" ([RFC 1209]) and "Transmission of IP and ARP over FDDI Networks" ([RFC 1390]). In particular, for ethernet and FDDI the explicit mapping between IP multicast addresses and data-link multicast addresses is used.1.2. Miscellaneous features This section lists, in no particular order, the other miscellaneous features that the MOSPF protocol supports: o MOSPF routers can be mixed within an Autonomous System (and even within a single OSPF area) with non-multicast OSPF routers. When this is done, all routers will interoperate in the routing of unicasts. Unicast routing will not be affected by this mixing; all unicast paths will be the same as before the introduction of multicast. This mixing of multicast and non-multicast routers enables phased introduction of a multicast capability into an internetwork. However, it should be noted that some configurations of MOSPF and non-MOSPF routers may produce unexpected failures in multicast routing (see Section 6.1 of [MOSPF]). o MOSPF does not include the ability to tunnel multicast datagrams through non-multicast routers. A tunneling capability has proved valuable when used by the DVMRP protocol in theMoy [Page 3]RFC 1585 MOSPF: Analysis and Experience March 1994 MBONE. However, it is assumed that, since MOSPF is an intra-AS protocol, multicast can be turned on in enough of the Autonomous System's routers to achieve the required connectivity without resorting to tunneling. The more centralized control that exists in most Autonomous Systems, when compared to the Internet as a whole, should make this possible. o In addition to calculating a separate datagram path for each [source network, multicast destination] combination, MOSPF can also vary the path based on IP Type of Service (TOS). As with OSPF unicast routing, TOS-based multicast routing is optional, and routers supporting it can be freely mixed with those that don't. o MOSPF supports all network types that are supported by the base OSPF protocol: broadcast networks, point-to-points networks and non-broadcast multi-access (NBMA) networks. Note however that IGMP is not defined on NBMA networks, so while these networks can support the forwarding of multicast datagrams, they cannot support directly connected group members. o MOSPF supports all Autonomous System configurations that are supported by the base OSPF protocol. In particular, an algorithm for forwarding multicast datagrams between OSPF areas is included. Also, areas with configured virtual links can be used for transit multicast traffic. o A way of forwarding multicast datagrams across Autonomous System boundaries has been defined. This means that a multicast datagram having an external source can still be forwarded throughout the Autonomous System. Facilities also exist for forwarding locally generated datagrams to Autonomous System exit points, from which they can be further distributed. The effectiveness of this support will depend upon the nature of the inter-AS multicast routing protocol. The one assumption that has been made is that the inter-AS multicast routing protocol will operate in an reverse path forwarding (RPF) fashion: namely, that multicast datagrams originating from an external source will enter the Autonomous System at the same place that unicast datagrams destined for that source will exit. o To deal with the fact that the external unicast and multicast topologies will be different for some time to come, a way to indicate that a route is available for multicast but not unicast (or vice versa) has been defined. This for example would allow a MOSPF system to use DVMRP as its inter-AS multicast routing protocol, while using BGP as its inter-AS unicast routing protocol.Moy [Page 4]RFC 1585 MOSPF: Analysis and Experience March 1994 o For those physical networks that have been assigned multiple IP network/subnet numbers, multicast routing can be disabled on all but one OSPF interface to the physical network. This avoids unwanted replication of multicast datagrams. o For those networks residing on Autonomous System boundaries, which may be running multiple multicast routing protocols (or multiple copies of the same multicast routing protocol), MOSPF can be configured to encapsulate multicast datagrams with unicast (rather than multicast) link-level destinations. This also avoids unwanted replication of multicast datagrams. o MOSPF provides an optimization for IP multicast's "expanding ring search" (sometimes called "TTL scoping") procedure. In an expanding ring search, an application finds the nearest server by sending out successive multicasts, each with a larger TTL. The first responding server will then be the closest (in terms of hops, but not necessarily in terms of the OSPF metric). MOSPF minimizes the network bandwidth consumed by an expanding ring search by refusing to forward multicast datagrams whose TTL is too small to ever reach a group member.2. Security architecture All MOSPF protocol packet exchanges (excluding IGMP) are specified by the base OSPF protocol, and as such are authenticated. For a discussion of OSPF's authentication mechanism, see Appendix D of [OSPF].3. MIB support Management support for MOSPF has been added to the base OSPF V2 MIB [OSPF MIB]. These additions consist of the ability to read and write the configuration parameters specified in Section B of [MOSPF], together with the ability to dump the new group-membership-LSAs.4. Implementations There is currently one MOSPF implementation, written by Proteon, Inc. It was released for general use in April 1992. It is a full MOSPF implementation, with the exception of TOS-based multicast routing. It also does not contain an inter-AS multicast routing protocol. The multicast applications included with the Proteon MOSPF implementation include: a multicast pinger, console commands so that the router itself can join and leave multicast groups (and so respond to multicast pings), and the ability to send SNMP traps to aMoy [Page 5]RFC 1585 MOSPF: Analysis and Experience March 1994 multicast address. Proteon is also using IP multicast to support the tunneling of other protocols over IP. For example, source route bridging is tunneled over a MOSPF domain, using one IP multicast address for explorer frames and mapping the segment/bridge found in a specifically-routed frame's RIF field to other IP multicast addresses. This last application has proved popular, since it provides a lightweight transport that is resistant to reordering. The Proteon MOSPF implementation is currently running in approximately a dozen sites, each site consisting of 10-20 routers. Table 1 gives a comparison between the code size of Proteon's base OSPF implementation and its MOSPF implementation. Two dimensions of lines of C bytes of 68020 object code ___________________________________________________ OSPF base 11,693 63,160 MOSPF 15,247 81,956 Table 1: Comparison of OSPF and MOSPF code sizes size are indicated: lines of C (comments and blanks included), and bytes of 68020 object code. In both cases, the multicast extensions to OSPF have engendered a 30% size increase. Note that in these sizes, the code used to configure and monitor the implementation has been included. Also, in the MOSPF code size figure, the IGMP implementation has been included.5. Testing Figure 1 shows the topology that was used for the initial debugging of Proteon's MOSPF implementation. It consists of seven MOSPF routers, interconnected by ethernets, token rings, FDDIs and serial lines. The applications used to test the routing were multicast ping and the sending of traps to a multicast address (the box labeled "NAZ" was a network analyzer that was occasionally sending IGMP Host Membership Reports and then continuously receiving multicast SNMP traps). The "vat" application was also used on workstations (without running the DVMRP "mrouted" daemon; see "Distance Vector Multicast Routing Protocol", [RFC 1075]) which were multicasting packet voice across the MOSPF domain.Moy [Page 6]RFC 1585 MOSPF: Analysis and Experience March 1994 The MOSPF features tested in this setup were: o Re-routing in response to topology changes. o Path verification after altering costs. o Routing multicast datagrams between areas. o Routing multicast datagrams to and from external addresses. o The various tiebreakers employed when constructing datagram shortest-path trees. o MOSPF over non-broadcast multi-access networks. o Interoperability of MOSPF and non-multicast OSPF routers. +---+ +-------------------------------|RT1| | +---+ | +---------+ | | | |
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -