📄 rfc2816.txt
字号:
format which is understood by other components of the BM responsible admission control. The RM is also responsible for returning the status of requests processed by the BM to the invoking application or higher layer protocol.6.1.2. Bandwidth Allocator The Bandwidth Allocator (BA) is responsible for performing admission control and maintaining state about the allocation of resources in the subnet. An end station can request various services, e.g. bandwidth reservation, modification of an existing reservation, queries about resource availability, etc. These requests are processed by the BA. The communication between the end station and the BA takes place through the RM. The location of the BA will depend largely on the implementation method. In a centralized implementation, the BA may reside on a single station in the subnet. In a distributed implementation, the functions of the BA may be distributed in all the end stations and bridges/switches as necessary. The BA is also responsible for deciding how to label flows, e.g. based on the admission control decision, the BA may indicate to the RM that packets belonging to a particular flow be tagged with some priority value which maps to the appropriate traffic class.6.1.3. Communication Protocols The protocols for communication between the various components of the BM system must be specified. These include the following: - Communication between the higher layer protocols and the RM: The BM must define primitives for the application to initiate reservations, query the BA about available resources, change change or delete reservations, etc. These primitives could be implemented as an API for an application to invoke functions of the BM via the RM. - Communication between the RM and the BA: A signaling mechanism must be defined for the communication between the RM and the BA. This protocol will specify the messages which must be exchanged between the RM and the BA in order to service various requests by the higher layer entity. - Communication between peer BAs: If there is more than one BA in the subnet, a means must be specified for inter-BA communication. Specifically, the BAs must be able to decide among themselvesGhanwani, et al. Informational [Page 16]RFC 2816 Framework for Int-Serv Over IEEE 802 LAN May 2000 about which BA would be responsible for which segments and bridges or switches. Further, if a request is made for resource reservation along the domain of multiple BAs, the BAs must be able to handle such a scenario correctly. Inter-BA communication will also be responsible for back-up and recovery in the event of failure.6.2. Centralized vs. Distributed Implementations Example scenarios are provided showing the location of the components of the bandwidth manager in centralized and fully distributed implementations. Note that in either case, the RM must be present in all end stations that need to make reservations. Essentially, centralized or distributed refers to the implementation of the BA, the component responsible for resource reservation and admission control. In the figures below, "App" refers to the application making use of the BM. It could either be a user application, or a higher layer protocol process such as RSVP. +---------+ .-->| BA |<--. / +---------+ \ / .-->| Layer 2 |<--. \ / / +---------+ \ \ / / \ \ / / \ \ +---------+ / / \ \ +---------+ | App |<----- /-/---------------------------\-\----->| App | +---------+ / / \ \ +---------+ | RM |<----. / \ .--->| RM | +---------+ / +---------+ +---------+ \ +---------+ | Layer 2 |<------>| Layer 2 |<------>| Layer 2 |<------>| Layer 2 | +---------+ +---------+ +---------+ +---------+ RSVP Host/ Intermediate Intermediate RSVP Host/ Router Bridge/Switch Bridge/Switch Router Figure 1: Bandwidth Manager with centralized Bandwidth Allocator Figure 1 shows a centralized implementation where a single BA is responsible for admission control decisions for the entire subnet. Every end station contains a RM. Intermediate bridges and switches in the network need not have any functions of the BM since they will not be actively participating in admission control. The RM at the end station requesting a reservation initiates communication with its BA. For larger subnets, a single BA may not be able to handle the reservations for the entire subnet. In that case it would be necessary to deploy multiple BAs, each managing the resources of aGhanwani, et al. Informational [Page 17]RFC 2816 Framework for Int-Serv Over IEEE 802 LAN May 2000 non-overlapping subset of segments. In a centralized implementation, the BA must have some knowledge of the Layer 2 topology of the subnet e.g., link layer spanning tree information, in order to be able to reserve resources on appropriate segments. Without this topology information, the BM would have to reserve resources on all segments for all flows which, in a switched network, would lead to very inefficient utilization of resources. +---------+ +---------+ | App |<-------------------------------------------->| App | +---------+ +---------+ +---------+ +---------+ | RM/BA |<------>| BA |<------>| BA |<------>| RM/BA | +---------+ +---------+ +---------+ +---------+ | Layer 2 |<------>| Layer 2 |<------>| Layer 2 |<------>| Layer 2 | +---------+ +---------+ +---------+ +---------+ RSVP Host/ Intermediate Intermediate RSVP Host/ Router Bridge/Switch Bridge/Switch Router Figure 2: Bandwidth Manager with fully distributed Bandwidth Allocator Figure 2 depicts the scenario of a fully distributed bandwidth manager. In this case, all devices in the subnet have BM functionality. All the end hosts are still required to have a RM. In addition, all stations actively participate in admission control. With this approach, each BA would need only local topology information since it is responsible for the resources on segments that are directly connected to it. This local topology information, such as a list of ports active on the spanning tree and which unicast addresses are reachable from which ports, is readily available in today's switches. Note that in the figures above, the arrows between peer layers are used to indicate logical connectivity.7. Model of the Bandwidth Manager in a Network In this section we describe how the model above fits with the existing IETF Integrated Services model of IP hosts and routers. First, we describe Layer 3 host and router implementations. Next, we describe how the model is applied in Layer 2 switches. Throughout we indicate any differences between centralized and distributed implementations. Occasional references are made to terminology from the Subnet Bandwidth Manager specification [14].Ghanwani, et al. Informational [Page 18]RFC 2816 Framework for Int-Serv Over IEEE 802 LAN May 20007.1. End Station Model7.1.1. Layer 3 Client Model We assume the same client model as IntServ and RSVP where we use the term "client" to mean the entity handling QoS in the Layer 3 device at each end of a Layer 2 Domain. In this model, the sending client is responsible for local admission control and packet scheduling onto its link in accordance with the negotiated service. As with the IntServ model, this involves per flow scheduling with possible traffic shaping/policing in every such originating node. For now, we assume that the client runs an RSVP process which presents a session establishment interface to applications, provides signaling over the network, programs a scheduler and classifier in the driver, and interfaces to a policy control module. In particular, RSVP also interfaces to a local admission control module which is the focus of this section. The following figure, reproduced from the RSVP specification, depicts the RSVP process in sending hosts. +-----------------------------+ | +-------+ +-------+ | RSVP | |Appli- | | RSVP <-------------------> | | cation<--> | | | | | |process| +-----+| | +-+-----+ | +->Polcy|| | | +--+--+-+ |Cntrl|| | |data | | +-----+| |===|===========|==|==========| | | +--------+ | +-----+| | | | | +--->Admis|| | +-V--V-+ +---V----+ |Cntrl|| | |Class-| | Packet | +-----+| | | ifier|==>Schedulr|===================> | +------+ +--------+ | data +-----------------------------+ Figure 3: RSVP in Sending Hosts7.1.2. Requests to Layer 2 ISSLL The local admission control entity within a client is responsible for mapping Layer 3 session establishment requests into Layer 2 semantics.Ghanwani, et al. Informational [Page 19]RFC 2816 Framework for Int-Serv Over IEEE 802 LAN May 2000 The upper layer entity makes a request, in generalized terms to ISSLL of the form: "May I reserve for traffic with <traffic characteristic> with <performance requirements> from <here> to <there> and how should I label it?" where <traffic characteristic> = Sender Tspec (e.g. bandwidth, burstiness, MTU) <performance requirements> = FlowSpec (e.g. latency, jitter bounds) <here> = IP address(es) <there> = IP address(es) - may be multicast7.1.3. At the Layer 3 Sender The ISSLL functionality in the sender is illustrated in Figure 4. The functions of the Requester Module may be summarized as follows: - Maps the endpoints of the conversation to Layer 2 addresses in the LAN, so that the client can determine what traffic is going where. This function probably makes reference to the ARP protocol cache for unicast or performs an algorithmic mapping for multicast destinations. - Communicates with any local Bandwidth Allocator module for local admission control decisions. - Formats a SBM request to the network with the mapped addresses and flow/filter specs. - Receives a response from the network and reports the admission control decision to the higher layer entity, along with any negotiated modifications to the session parameters. - Saves any returned user_priority to be associated with this session in a "802 header" table. This will be used when constructing the Layer 2 headers for future data packets belonging to this session. This table might, for example, be indexed by the RSVP flow identifier.Ghanwani, et al. Informational [Page 20]RFC 2816 Framework for Int-Serv Over IEEE 802 LAN May 2000 from IP from RSVP +----|------------|------------+ | +--V----+ +---V---+ | | | Addr <---> | | SBM signaling | |mapping| |Request|<-----------------------> | +---+---+ |Module | |
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -