📄 rfc1953.txt
字号:
Network Working Group P. Newman, IpsilonRequest for Comments: 1953 W. L. Edwards, SprintCategory: Informational R. Hinden, Ipsilon E. Hoffman, Ipsilon F. Ching Liaw, Ipsilon T. Lyon, Ipsilon G. Minshall, Ipsilon May 1996 Ipsilon Flow Management Protocol Specification for IPv4 Version 1.0Status of this Memo This document provides information for the Internet community. This memo does not specify an Internet standard of any kind. Distribution of this memo is unlimited.IESG Note: This memo documents a private protocol for IPv4-based flows. This protocol is NOT the product of an IETF working group nor is it a standards track document. It has not necessarily benefited from the widespread and in depth community review that standards track documents receive.Abstract The Ipsilon Flow Management Protocol (IFMP), is a protocol for allowing a node to instruct an adjacent node to attach a layer 2 label to a specified IP flow. The label allows more efficient access to cached routing information for that flow. The label can also enable a node to switch further packets belonging to the specified flow at layer 2 rather than forwarding them at layer 3.Table of Contents 1. Introduction....................................................2 2. Flow Types......................................................2 3. IFMP Adjacency Protocol.........................................4 3.1 Packet Format.............................................4 3.2 Procedure.................................................7 4. IFMP Redirection Protocol......................................10 4.1 Redirect Message.........................................12 4.2 Reclaim Message..........................................13 4.3 Reclaim Ack Message......................................15 4.4 Label Range Message......................................16Newman, et. al. Informational [Page 1]RFC 1953 IFMP Specification May 1996 4.5 Error Message............................................17 References........................................................19 Security Considerations...........................................19 Authors' Addresses................................................191. Introduction The Ipsilon Flow Management Protocol (IFMP), is a protocol for instructing an adjacent node to attach a layer 2 label to a specified IP flow. The label allows more efficient access to cached routing information for that flow and it allows the flow to be switched rather than routed in certain cases. If a network node's upstream and downstream links both redirect a flow at the node, then the node can switch the flow at the data link layer rather than forwarding it at the network layer. The label space is managed at the downstream end of each link and redirection messages are sent upstream to associate a particular flow with a given label. Each direction of transmission on a link is treated separately. If the flow is not refreshed by the time the lifetime field in the redirect message expires, then the association between the flow and the label is discarded. A flow is refreshed by sending a redirect message, identical to the original, before the lifetime expires. Several flow types may be specified. Each flow type specifies the set of fields from the packet header that are used to identify a flow. There must be an ordering amongst the different flow types such that a most specific match operation may be performed. A particular flow is specified by a flow identifier. The flow identifier for that flow gives the contents of the set of fields from the packet header as defined for the flow type to which it belongs. This document specifies the IFMP protocol for IPv4 on a point-to- point link. The definition of labels, and the encapsulation of flows, are specified in a separate document for each specific data link technology. The specification for ATM data links is given in [ENCAP].2. Flow Types A flow is a sequence of packets that are sent from a particular source to a particular (unicast or multicast) destination and that are related in terms of their routing and any logical handling policy they may require.Newman, et. al. Informational [Page 2]RFC 1953 IFMP Specification May 1996 A flow is identified by its flow identifier. Several different flow types can be defined. The particular set of fields from the packet header used to identify a flow constitutes the flow type. The values of these fields, for a particular flow, constitutes the flow identifier for that flow. The values of these fields must be invariant in all packets belonging to the same flow at any point in the network. Flow types are sub- or super-sets of each other such that there is a clear hierarchy of flow types. This permits a most specific match operation to be performed. (If additional flow types are defined in the future that are not fully ordered then the required behavior will be defined.) Each flow type also specifies an encapsulation that is to be used after a flow of this type is redirected. The encapsulations for each flow type are specified in a separate document for each specific data link technology. The encapsulations for flows over ATM data links are given in [ENCAP]. Three flow types are defined in this version of the protocol: Flow Type 0 Flow Type 0 is used to change the encapsulation of IPv4 packets from the default encapsulation. For Flow Type 0: Flow Type = 0 and Flow ID Length = 0. The Flow Identifier for Flow Type 0 is null (zero length). Flow Type 1 Flow Type 1 is designed for protocols such as UDP and TCP in which the first four octets after the IPv4 header specify a Source Port number and a Destination Port number. For Flow Type 1, Flow Type = 1 and Flow ID Length = 4 (32 bit words). The format of the Flow Identifier for Flow Type 1 is:Newman, et. al. Informational [Page 3]RFC 1953 IFMP Specification May 1996 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Version| IHL |Type of Service| Time to Live | Protocol | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Source Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Destination Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Source Port | Destination Port | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Flow Type 2 For Flow Type 2, Flow Type = 2 and Flow ID Length = 3 (32 bit words). The format of the Flow Identifier for Flow Type 2 is: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Version| IHL | Reserved | Time to Live | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Source Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Destination Address | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ The Reserved fields are unused and should be set to zero by the sender and ignored by the receiver.3. IFMP Adjacency Protocol The IFMP Adjacency Protocol allows a host or router to discover the identity of a peer at the other end of a link. It is also used to synchronize state across the link, to detect when the peer at the other end of the link changes, and to exchange a list of IP addresses assigned to the link.3.1 Packet Format All IFMP messages belonging to the Adjacency Protocol must be encapsulated within an IPv4 packet and must be sent to the IP limited broadcast address (255.255.255.255). The Protocol field in the IP header must contain the value 101 (decimal) indicating that the IP packet contains an IFMP message. The Time to Live (TTL) field in the IP header must be set to 1.Newman, et. al. Informational [Page 4]RFC 1953 IFMP Specification May 1996 All IFMP messages belonging to the adjacency protocol have the following structure: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Version | Op Code | Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Sender Instance | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Peer Instance | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Peer Identity | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Peer Next Sequence Number | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Reserved | Reserved | Max Ack Intvl | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | ~ Address List ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Version The IFMP protocol version number. The current Version = 1. Op Code Specifies the function of the message. Four Op Codes are defined for the IFMP Adjacency Protocol: SYN: Op Code = 0 SYNACK: Op Code = 1 RSTACK: Op Code = 2 ACK: Op Code = 3 Checksum The 16-bit one's complement of the one's complement sum of a pseudo header of information from the IP header and the IFMP message itself. The pseudo header, conceptually prefixed to the IFMP message, contains the Source Address, the Destination Address, and the Protocol fields from the IPv4 header, and the total length of the IFMP message starting with the Version field (this is equivalent to the value of the Total Length field from the IPv4 header minus the length of the IPv4 header itself).Newman, et. al. Informational [Page 5]RFC 1953 IFMP Specification May 1996 Sender Instance For the SYN, SYNACK, and ACK messages, is the sender's instance number for the link. The receiver uses this to detect when the link comes back up after going down or when the identity of the peer at the other end of the link changes. The instance number is a 32 bit number that is guaranteed to be unique within the recent past and to change when the link or node comes back up after going down. It is used in a similar manner to the initial sequence number (ISN) in TCP [RFC 793]. Zero is not a valid instance number. For the RSTACK message the Sender Instance field is set to the value of the Peer Instance field from the incoming message that caused an RSTACK message to be generated. Peer Instance For the SYN, SYNACK, and ACK messages, is what the sender believes is the peer's current instance number for the link. If the sender of the message does not know the peer's current instance number for the link, the sender must set this field to zero. For the RSTACK message the Peer Instance field is set to the value of the Sender Instance field from the incoming message that caused an RSTACK message to be generated. Peer Identity For the SYN, SYNACK, and ACK messages, is the IP address of the peer that the sender of the message believes is at the other end of the link. The Peer Identity is taken from the Source IP Address of the IP header of a SYN or a SYNACK message. If the sender of the message does not know the IP address of the peer at the other end of the link, the sender must set set this field to zero. For the RSTACK message, the Peer Identity field is set to the value of the Source Address field from the IP header of the incoming message that caused an RSTACK message to be generated. Peer Next Sequence Number Gives the value of the peer's Sequence Number that the sender of the IFMP Adjacency Protocol message expects to arrive in the next IFMP Redirection Protocol message. If a node is in the ESTAB state, and the value of the Peer Next Sequence Number in an incoming ACK message is greater than the value of the Sequence Number plus one, from the last IFMP Redirection Protocol message transmitted out of the port on which the incoming ACK message was received, the link should be reset. The procedure to reset the link is defined in section 3.2.Newman, et. al. Informational [Page 6]RFC 1953 IFMP Specification May 1996 Max Ack Intvl Maximum Acknowledgement Interval is the maximum amount of time the sender of the message will wait until transmitting an ACK message. Address List A list of one or more IP addresses that are assigned to the link by the sender of the message. The list must have at least one entry that is identical to the Source Address in the IP header. The contents of this list are not used by the IFMP protocol but can be made available to the routing protocol.3.2 Procedure The IFMP Adjacency Protocol is described by the rules and state tables given in this section. The rules and state tables use the following operations: o The "Update Peer Verifier" operation is defined as storing the Sender Instance and the Source IP Address from a SYN or SYNACK message received from the peer on a particular port. o The procedure "Reset the link" is defined as: 1. Generate a new instance number for the link 2. Delete the peer verifier (set the stored values of Sender Instance and Source IP Address of the peer to zero) 3. Set Sequence Number and Peer Next Sequence Number to zero 4. Send a SYN message 5. Enter the SYNSENT state
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -