📄 rfc2271.txt
字号:
Harrington, et. al. Standards Track [Page 11]RFC 2271 SNMPv3 Architecture January 1998 An Access Control Model defines mechanisms to determine whether access to a managed object should be allowed. An Access Control Model may define a MIB module used during processing and to allow the remote configuration of access control policies.2.8. Protocol Operations SNMP messages encapsulate an SNMP Protocol Data Unit (PDU). It is the purpose of a Protocol Operations document to define the operations of the protocol with respect to the processing of the PDUs. An application document defines which Protocol Operations documents are supported by the application.2.9. Applications An SNMP entity normally includes a number of applications. Applications use the services of an SNMP engine to accomplish specific tasks. They coordinate the processing of management information operations, and may use SNMP messages to communicate with other SNMP entities. Applications documents describe the purpose of an application, the services required of the associated SNMP engine, and the protocol operations and informational model that the application uses to perform management operations. An application document defines which set of documents are used to specifically define the structure of management information, textual conventions, conformance requirements, and operations supported by the application.2.10. Structure of Management Information Management information is viewed as a collection of managed objects, residing in a virtual information store, termed the Management Information Base (MIB). Collections of related objects are defined in MIB modules. It is the purpose of a Structure of Management Information document to establish the syntax for defining objects, modules, and other elements of managed information.Harrington, et. al. Standards Track [Page 12]RFC 2271 SNMPv3 Architecture January 19982.11. Textual Conventions When designing a MIB module, it is often useful to define new types similar to those defined in the SMI, but with more precise semantics, or which have special semantics associated with them. These newly defined types are termed textual conventions, and may defined in separate documents, or within a MIB module.2.12. Conformance Statements It may be useful to define the acceptable lower-bounds of implementation, along with the actual level of implementation achieved. It is the purpose of Conformance Statements to define the notation used for these purposes.2.13. Management Information Base Modules MIB documents describe collections of managed objects which instrument some aspect of a managed node.2.13.1. SNMP Instrumentation MIBs An SNMP MIB document may define a collection of managed objects which instrument the SNMP protocol itself. In addition, MIB modules may be defined within the documents which describe portions of the SNMP architecture, such as the documents for Message processing Models, Security Models, etc. for the purpose of instrumenting those Models, and for the purpose of allowing remote configuration of the Model.2.14. SNMP Framework Documents This architecture is designed to allow an orderly evolution of portions of SNMP Frameworks. Throughout the rest of this document, the term "subsystem" refers to an abstract and incomplete specification of a portion of a Framework, that is further refined by a model specification. A "model" describes a specific design of a subsystem, defining additional constraints and rules for conformance to the model. A model is sufficiently detailed to make it possible to implement the specification. An "implementation" is an instantiation of a subsystem, conforming to one or more specific models. SNMP version 1 (SNMPv1), is the original Internet-standard Network Management Framework, as described in RFCs 1155, 1157, and 1212.Harrington, et. al. Standards Track [Page 13]RFC 2271 SNMPv3 Architecture January 1998 SNMP version 2 (SNMPv2), is the SNMPv2 Framework as derived from the SNMPv1 Framework. It is described in RFCs 1902-1907. SNMPv2 has no message definition. The Community-based SNMP version 2 (SNMPv2c), is an experimental SNMP Framework which supplements the SNMPv2 Framework, as described in RFC1901. It adds the SNMPv2c message format, which is similar to the SNMPv1 message format. SNMP version 3 (SNMPv3), is an extensible SNMP Framework which supplements the SNMPv2 Framework, by supporting the following: - a new SNMP message format, - Security for Messages, and - Access Control. Other SNMP Frameworks, i.e., other configurations of implemented subsystems, are expected to also be consistent with this architecture.3. Elements of the Architecture This section describes the various elements of the architecture and how they are named. There are three kinds of naming: 1) the naming of entities, 2) the naming of identities, and 3) the naming of management information. This architecture also defines some names for other constructs that are used in the documentation.3.1. The Naming of Entities An SNMP entity is an implementation of this architecture. Each such SNMP entity consists of an SNMP engine and one or more associated applications. The following figure shows details about an SNMP entity and the components within it.Harrington, et. al. Standards Track [Page 14]RFC 2271 SNMPv3 Architecture January 1998 +-------------------------------------------------------------------+ | SNMP entity | | | | +-------------------------------------------------------------+ | | | SNMP engine (identified by snmpEngineID) | | | | | | | | +------------+ +------------+ +-----------+ +-----------+ | | | | | | | | | | | | | | | | | Dispatcher | | Message | | Security | | Access | | | | | | | | Processing | | Subsystem | | Control | | | | | | | | Subsystem | | | | Subsystem | | | | | | | | | | | | | | | | | +------------+ +------------+ +-----------+ +-----------+ | | | | | | | +-------------------------------------------------------------+ | | | | +-------------------------------------------------------------+ | | | Application(s) | | | | | | | | +-------------+ +--------------+ +--------------+ | | | | | Command | | Notification | | Proxy | | | | | | Generator | | Receiver | | Forwarder | | | | | +-------------+ +--------------+ +--------------+ | | | | | | | | +-------------+ +--------------+ +--------------+ | | | | | Command | | Notification | | Other | | | | | | Responder | | Originator | | | | | | | +-------------+ +--------------+ +--------------+ | | | | | | | +-------------------------------------------------------------+ | | | +-------------------------------------------------------------------+3.1.1. SNMP engine An SNMP engine provides services for sending and receiving messages, authenticating and encrypting messages, and controlling access to managed objects. There is a one-to-one association between an SNMP engine and the SNMP entity which contains it. The engine contains: 1) a Dispatcher, 2) a Message Processing Subsystem,Harrington, et. al. Standards Track [Page 15]RFC 2271 SNMPv3 Architecture January 1998 3) a Security Subsystem, and 4) an Access Control Subsystem.3.1.1.1. snmpEngineID Within an administrative domain, an snmpEngineID is the unique and unambiguous identifier of an SNMP engine. Since there is a one-to-one association between SNMP engines and SNMP entities, it also uniquely and unambiguously identifies the SNMP entity.3.1.1.2. Dispatcher There is only one Dispatcher in an SNMP engine. It allows for concurrent support of multiple versions of SNMP messages in the SNMP engine. It does so by: - sending and receiving SNMP messages to/from the network, - determining the version of an SNMP message and interacting with the corresponding Message Processing Model, - providing an abstract interface to SNMP applications for delivery of a PDU to an application. - providing an abstract interface for SNMP applications that allows them to send a PDU to a remote SNMP entity.3.1.1.3. Message Processing Subsystem The Message Processing Subsystem is responsible for preparing messages for sending, and extracting data from received messages. The Message Processing Subsystem potentially contains multiple Message Processing Models as shown in the next figure. * One or more Message Processing Models may be present.Harrington, et. al. Standards Track [Page 16]RFC 2271 SNMPv3 Architecture January 1998 +------------------------------------------------------------------+ | | | Message Processing Subsystem | | | | +------------+ +------------+ +------------+ +------------+ | | | * | | * | | * | | * | | | | SNMPv3 | | SNMPv1 | | SNMPv2c | | Other | | | | Message | | Message | | Message | | Message | | | | Processing | | Processing | | Processing | | Processing | | | | Model | | Model | | Model | | Model | | | | | | | | | | | | | +------------+ +------------+ +------------+ +------------+ | | | +------------------------------------------------------------------+3.1.1.3.1. Message Processing Model
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -