📄 rfc1793.txt
字号:
with the DC-bit set in the Hello's Options field. Because RTC is not configured to treat the link as a demand circuit, the first Hello that RTB receives from RTC may not have the DC-bit set. However, subsequent Hellos and Database Description Packets received from RTC will have the DC-bit set, indicating that the two routers have agreed that the link will be treated as a demand circuit. The entire negotiation is pictured in Figure 2. Note that if RTC were unable or unwilling to suppress Hellos on the link, the initial Database Description sent from Router RTC to RTB would have the DC-bit clear, forcing Router RTB to revert to the periodic sending of Hellos specified in Section 9.5 of [1]. Time T1: Database exchange over demand circuit The initial synchronization of link state databases (the Database Exchange Process) over the demand circuit then occurs as over any point-to-point link, with one exception. LSAs included in Link State Updates Packets sent over the + + + | +---+ | | +--+ |---|RTA|---| | +--+ |H1|---| +---+ | |---|H2| +--+ | | +---+ ODL +---+ | +--+ |LAN Y |---|RTB|-------------|RTC|---| + | +---+ +---+ | + + Figure 1: In the example of Section 4.1, a single demand circuit (labeled ODL) bisects an internetwork.Moy [Page 16]RFC 1793 OSPF over Demand Circuits April 1995 +---+ +---+ |RTB| |RTC| +---+ +---+ Hello (DC-bit set) -------------------------------------> Hello (DC-bit clear) <------------------------------------- Hello (DC-bit set, RTC seen) -------------------------------------> Database Description (DC-bit set) <------------------------------------- Figure 2: Successful negotiation of Hello suppression. demand circuit (in response to Link State Request Packets), will have the DoNotAge bit set in their LS age field. So, after the Database Exchange Process is finished, all routers will have 3 LSAs in their link state databases (router-LSAs for Routers RTA, RTB and RTC), but the LS age fields belonging to the LSAs will vary depending on which side of the demand circuit they were originated from (see Table 1). For example, all routers other than Router RTC have the DoNotAge bit set in Router RTC's router-LSA; this removes the need for Router RTC to refresh its router-LSA over the demand circuit. LS age LSA in RTB in RTC ______________________________________________ RTA's Router-LSA 1000 DoNotAge+1001 RTB's Router-LSA 10 DoNotAge+11 RTC's Router-LSA DoNotAge+11 10 Table 1: After Time T1 in Section 4.1, possible LS age fields on either side of the demand circuit Time T2: Hello traffic ceases After the Database Exchange Process has completed, no Hellos are sent over the demand circuit. If there is no application data to be sent over the demand circuit, the circuit will be idle.Moy [Page 17]RFC 1793 OSPF over Demand Circuits April 1995 Time T3: Underlying data-link connection torn down After some period of inactivity, the underlying data-link connection will be torn down (e.g., an ISDN call would be cleared) in order to save connect charges. This will be transparent to the OSPF routing; no LSAs or routing table entries will change as a result. Time T4: Router RTA's LSA is refreshed At some point Router RTA will refresh its own router-LSA (i.e., when the LSA's LS age hits LSRefreshInterval). This refresh will be flooded to Router RTB, who will look at it and decide NOT to flood it over the demand circuit to Router RTC, because the LSA's contents have not really changed (only the LS Sequence Number). At this point, the LS sequence numbers that the routers have for RTA's router-LSA differ depending on which side of the demand circuit the routers lie. Because there is still no application traffic, the underlying data-link connection remains disconnected. Time T5: Router RTA's LAN interface comes up When Router RTA's LAN interface (connecting to Host H1) comes up, RTA will originate a new router-LSA. This router- LSA WILL be flooded over the demand circuit because its contents have now changed. The underlying data-link connection will have to be brought up to flood the LSA. After flooding, routers on both sides of the demand circuit will again agree on the LS Sequence Number for RTA's router-LSA. Time T6: Underlying data-link connection is torn down again Assuming that there is still no application traffic transiting the demand circuit, the underlying data-link connection will again be torn down after some period of inactivity. Time T7: File transfer started between Hosts H1 and H2 As soon as application data needs to be sent across the demand circuit the underlying data-link connection is brought back up.Moy [Page 18]RFC 1793 OSPF over Demand Circuits April 1995 Time T8: Physical link becomes inoperative If an indication is received from the data-link or physical layers indicating that the demand circuit can no longer be established, Routers RTB and RTC declare their point-to- point interfaces down, and originate new router-LSAs. Both routers will attempt to bring the connection back up by sending Hellos at the reduced rate of PollInterval. Note that while the connection is inoperative, Routers RTA and RTB will continue to have an old router-LSA for RTC in their link state database, and this LSA will not age out because it has the DoNotAge bit set. However, according to Section 2.3 they will flush Router RTC's router-LSA if the demand circuit remains inoperative for longer than MaxAge. 4.2. Example 2: Demand and non-demand circuits in parallel This example demonstrates the demand circuit functionality when both demand circuits and non-demand circuits (e.g., leased lines) are used to interconnect regions of an internetwork. Such an internetwork is shown in Figure 3. Host H1 can communicate with Host H2 either over the demand link between Routers RTB and RTC, or over the leased line between Routers RTB and RTD. Because the basic properties of the demand circuit functionality were presented in the previous example, this example will only address the unique issues involved when using both demand and non-demand circuits in parallel. Assume that Routers RTB and RTY are initially powered off, but that all other routers and their attached links are both operational and implement the demand circuit modifications to OSPF. Throughout the example, a TCP connection between Hosts H1 and H2 is transmitting data. Furthermore, assume that the cost of the demand circuit from RTB to RTC has been set considerably higher than the cost of the leased line between RTB and RTD; for this reason traffic between Hosts H1 and H2 will always be sent over the leased line when it is operational.Moy [Page 19]RFC 1793 OSPF over Demand Circuits April 1995 The following events may then transpire: + +---+ | |RTC|--| + +---+ | +---+ | + / |--|RTE|--| +--+ +--+ | /ODL | +---+ |--|H2| |H1|----| +---+ +---+/ | + +--+ +--+ |--|RTA|-------|RTB| | | +---+ +---+\ | + + \ | +---+ | \ |--|RTY|--| +---+ | +---+ | |RTD|--| + +---+ | + Figure 3: Example 2's internetwork. Vertical lines are LAN segments. Six routers are pictured, Routers RTA-RTE and RTY. RTB has three serial line interfaces, two of which are leased lines and the third (connecting to RTC) a demand circuit. Two hosts, H1 and H2, are pictured to illustrate the effect of application traffic. Time T0: Router RTB comes up. Assume RTB supports the demand circuit OSPF modifications. When Router RTB comes up and establishes links to Routers RTC and RTD, it will flood the same information over both. However, LSAs sent over the demand circuit (to Router RTC) will have the DoNotAge bit set, while those sent over the leased line to Router RTD will not. Because the DoNotAge bit is not taken into account when comparing LSA instances, the routers on the right side of RTB (RTC, RTE and RTD) may or may not have the DoNotAge bit set in their database copies of RTA's and RTB's router-LSAs. This depends on whether the LSAs sent over the demand link reach the routers before those sent over the leased line. One possibility is pictured in Table 2.Moy [Page 20]RFC 1793 OSPF over Demand Circuits April 1995 LS age LSA in RTC in RTD in RTE ________________________________________________ RTA's Router-LSA DoNotAge+20 21 21 RTB's Router-LSA DoNotAge+5 6 6
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -