📄 rfc2743.txt
字号:
Linn Standards Track [Page 15]RFC 2743 GSS-API January 2000 GSS-API library defaults | | V text, for text --------------> internal_name (IN) -----------> display only import_name() / display_name() / / / accept_sec_context() / | / | / | / canonicalize_name() | / | / | / | / | / | | V V <--------------------- single mechanism import_name() exported name: flat internal_name (MN) binary "blob" usable ----------------------> for access control export_name()1.1.6: Channel Bindings The GSS-API accommodates the concept of caller-provided channel binding ("chan_binding") information. Channel bindings are used to strengthen the quality with which peer entity authentication is provided during context establishment, by limiting the scope within which an intercepted context establishment token can be reused by an attacker. Specifically, they enable GSS-API callers to bind the establishment of a security context to relevant characteristics (e.g., addresses, transformed representations of encryption keys) of the underlying communications channel, of protection mechanisms applied to that communications channel, and to application-specific data. The caller initiating a security context must determine the appropriate channel binding values to provide as input to the GSS_Init_sec_context() call, and consistent values must be provided to GSS_Accept_sec_context() by the context's target, in order for both peers' GSS-API mechanisms to validate that received tokens possess correct channel-related characteristics. Use or non-use of the GSS-API channel binding facility is a caller option. GSS-API mechanisms can operate in an environment where NULL channel bindings are presented; mechanism implementors are encouraged, but notLinn Standards Track [Page 16]RFC 2743 GSS-API January 2000 required, to make use of caller-provided channel binding data within their mechanisms. Callers should not assume that underlying mechanisms provide confidentiality protection for channel binding information. When non-NULL channel bindings are provided by callers, certain mechanisms can offer enhanced security value by interpreting the bindings' content (rather than simply representing those bindings, or integrity check values computed on them, within tokens) and will therefore depend on presentation of specific data in a defined format. To this end, agreements among mechanism implementors are defining conventional interpretations for the contents of channel binding arguments, including address specifiers (with content dependent on communications protocol environment) for context initiators and acceptors. (These conventions are being incorporated in GSS-API mechanism specifications and into the GSS-API C language bindings specification.) In order for GSS-API callers to be portable across multiple mechanisms and achieve the full security functionality which each mechanism can provide, it is strongly recommended that GSS-API callers provide channel bindings consistent with these conventions and those of the networking environment in which they operate.1.2: GSS-API Features and Issues This section describes aspects of GSS-API operations, of the security services which the GSS-API provides, and provides commentary on design issues.1.2.1: Status Reporting and Optional Service Support1.2.1.1: Status Reporting Each GSS-API call provides two status return values. Major_status values provide a mechanism-independent indication of call status (e.g., GSS_S_COMPLETE, GSS_S_FAILURE, GSS_S_CONTINUE_NEEDED), sufficient to drive normal control flow within the caller in a generic fashion. Table 1 summarizes the defined major_status return codes in tabular fashion. Sequencing-related informatory major_status codes (GSS_S_DUPLICATE_TOKEN, GSS_S_OLD_TOKEN, GSS_S_UNSEQ_TOKEN, and GSS_S_GAP_TOKEN) can be indicated in conjunction with either GSS_S_COMPLETE or GSS_S_FAILURE status for GSS-API per-message calls. For context establishment calls, these sequencing-related codes will be indicated only in conjunction with GSS_S_FAILURE status (never inLinn Standards Track [Page 17]RFC 2743 GSS-API January 2000 conjunction with GSS_S_COMPLETE or GSS_S_CONTINUE_NEEDED), and, therefore, always correspond to fatal failures if encountered during the context establishment phase. Table 1: GSS-API Major Status Codes FATAL ERROR CODES GSS_S_BAD_BINDINGS channel binding mismatch GSS_S_BAD_MECH unsupported mechanism requested GSS_S_BAD_NAME invalid name provided GSS_S_BAD_NAMETYPE name of unsupported type provided GSS_S_BAD_STATUS invalid input status selector GSS_S_BAD_SIG token had invalid integrity check GSS_S_BAD_MIC preferred alias for GSS_S_BAD_SIG GSS_S_CONTEXT_EXPIRED specified security context expired GSS_S_CREDENTIALS_EXPIRED expired credentials detected GSS_S_DEFECTIVE_CREDENTIAL defective credential detected GSS_S_DEFECTIVE_TOKEN defective token detected GSS_S_FAILURE failure, unspecified at GSS-API level GSS_S_NO_CONTEXT no valid security context specified GSS_S_NO_CRED no valid credentials provided GSS_S_BAD_QOP unsupported QOP value GSS_S_UNAUTHORIZED operation unauthorized GSS_S_UNAVAILABLE operation unavailable GSS_S_DUPLICATE_ELEMENT duplicate credential element requested GSS_S_NAME_NOT_MN name contains multi-mechanism elements INFORMATORY STATUS CODES GSS_S_COMPLETE normal completion GSS_S_CONTINUE_NEEDED continuation call to routine required GSS_S_DUPLICATE_TOKEN duplicate per-message token detected GSS_S_OLD_TOKEN timed-out per-message token detected GSS_S_UNSEQ_TOKEN reordered (early) per-message token detected GSS_S_GAP_TOKEN skipped predecessor token(s) detected Minor_status provides more detailed status information which may include status codes specific to the underlying security mechanism. Minor_status values are not specified in this document.Linn Standards Track [Page 18]RFC 2743 GSS-API January 2000 GSS_S_CONTINUE_NEEDED major_status returns, and optional message outputs, are provided in GSS_Init_sec_context() and GSS_Accept_sec_context() calls so that different mechanisms' employment of different numbers of messages within their authentication sequences need not be reflected in separate code paths within calling applications. Instead, such cases are accommodated with sequences of continuation calls to GSS_Init_sec_context() and GSS_Accept_sec_context(). The same facility is used to encapsulate mutual authentication within the GSS-API's context initiation calls. For mech_types which require interactions with third-party servers in order to establish a security context, GSS-API context establishment calls may block pending completion of such third-party interactions. On the other hand, no GSS-API calls pend on serialized interactions with GSS-API peer entities. As a result, local GSS-API status returns cannot reflect unpredictable or asynchronous exceptions occurring at remote peers, and reflection of such status information is a caller responsibility outside the GSS-API.1.2.1.2: Optional Service Support A context initiator may request various optional services at context establishment time. Each of these services is requested by setting a flag in the req_flags input parameter to GSS_Init_sec_context(). The optional services currently defined are: - Delegation - The (usually temporary) transfer of rights from initiator to acceptor, enabling the acceptor to authenticate itself as an agent of the initiator. - Mutual Authentication - In addition to the initiator authenticating its identity to the context acceptor, the context acceptor should also authenticate itself to the initiator. - Replay detection - In addition to providing message integrity services, GSS_GetMIC() and GSS_Wrap() should include message numbering information to enable GSS_VerifyMIC() and GSS_Unwrap() to detect if a message has been duplicated. - Out-of-sequence detection - In addition to providing message integrity services, GSS_GetMIC() and GSS_Wrap() should include message sequencing information to enable GSS_VerifyMIC() and GSS_Unwrap() to detect if a message has been received out of sequence.Linn Standards Track [Page 19]RFC 2743 GSS-API January 2000 - Anonymous authentication - The establishment of the security context should not reveal the initiator's identity to the context acceptor. - Available per-message confidentiality - requests that per- message confidentiality services be available on the context. - Available per-message integrity - requests that per-message integrity services be available on the context. Any currently undefined bits within such flag arguments should be ignored by GSS-API implementations when presented by an application, and should be set to zero when returned to the application by the GSS-API implementation. Some mechanisms may not support all optional services, and some mechanisms may only support some services in conjunction with others. Both GSS_Init_sec_context() and GSS_Accept_sec_context() inform the applications which services will be available from the context when the establishment phase is complete, via the ret_flags output parameter. In general, if the security mechanism is capable of providing a requested service, it should do so, even if additional services must be enabled in order to provide the requested service. If the mechanism is incapable of providing a requested service, it should proceed without the service, leaving the application to abort the context establishment process if it considers the requested service to be mandatory. Some mechanisms may specify that support for some services is optional, and that implementors of the mechanism need not provide it. This is most commonly true of the confidentiality service, often because of legal restrictions on the use of data-encryption, but may apply to any of the services. Such mechanisms are required to send at least one token from acceptor to initiator during context
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -