📄 rfc1363.txt
字号:
RFC 1363 A Proposed Flow Specification September 1992 guarantee that the Ethernet will not saturate at some time during a flow's lifetime. Thus it must be possible to distinguish between flows which cannot tolerate the small possibility of a failure (and thus must guaranteed at every hop in the path) and those that can tolerate islands of uncertainty. Second, there is some preliminary work (see [2]) that suggests that some applications will be able to adapt to modest variations in internetwork performance and that network designers can exploit this flexibility to allow better network utilization. In this model, the internetwork would be allowed to deviate slightly from the promised flow parameters during periods of load. This class of service is called predicted service (to distinguish it from guaranteed service). The difference between predicted service and service which cannot be perfectly guaranteed (e.g., the Ethernet example mentioned above) is that the imperfect guarantee makes no statistical promises about how it might mis-behave. In the worst case, the imperfect guarantee will not work at all, whereas predicted service will give slightly degraded service. Note too that predicted service assumes that the routers and links in a path all cooperate (to some degree) whereas an imperfect guarantee states that some routers or links will not cooperate. The field is a 16-bit field in Internet byte order. There are six legal values: 0 - no guarantee is required (the host is simply expressing desired performance for the flow) 100 (hex) - an imperfect guarantee is requested. 200 (hex) - predicted service is requested and if unavailable, then no flow should be established. 201 (hex) - predicted service is requested but an imperfect guarantee is acceptable. 300 (hex) - guaranteed service is requested and if a firm guarantee cannot be given, then no flow should be established. 301 (hex) - guaranteed service is request and but an imperfect guarantee is acceptable. It is expected that asking for predicted service or permitting an imperfect guarantee will substantially increase the chance that aPartridge [Page 11]RFC 1363 A Proposed Flow Specification September 1992 flow request will be accepted.Possible Limitations in the Proposed Flow Spec There are at least three places where the flow spec is arguably imperfect, based on what we currently know about flow reservation. In addition, since this is a first attempt at a flow spec, readers should expect modifications as we learn more. First, the loss model is not perfect. Simply stating that an application is sensitive to loss and to burst loss is a rather crude indication of sensitivity. However, explicitly enumerating loss requirements within a cycle is also an imperfect mechanism. The key problem with the explicit values is that not all packets sent over a flow will be a full MTU in size. Expressed another way, the current flow spec expects that an MTU-sized packet will be the unit of error recovery. If flows send packets in a range of sizes, then the loss bounds may not be very useful. However, the thought of allowing a flow to request a set of loss models (one per packet size) is sufficiently painful that I've limited the flow to one loss profile. Further study of loss models is clearly needed. Second, the minimum delay sensitivity field limits a flow to stating that there is one point on a performance sensitivity curve below which the flow is no longer interested in improved performance. It may be that a single point is insufficient to fully express a flow's sensitivity. For example, consider a flow for supporting part of a two-way voice conversation. Human users will notice improvements in delay down to a few 10s of milliseconds. However, the key point of sensitivity is the delay at which normal conversation begins to become awkward (about 100 milliseconds). By allowing only one sensitivity point, the flow spec forces the flow designer to either ask for the best possible delay (e.g, a few 10's of ms) to try to get maximum performance from the network, or state a sensitivity of about 95 ms, and accept the possibility that the internetwork will not try to improve delay below that value, even if it could (and even though the user would notice the improvement). My expectation is that a simple point is likely to be easier to deal with than attempting to enumerate two (or three or four) points in the sensitivity curve. Third, the models for service guarantees is still evolving and it is by no means clear that the service choices provided are the correct set.Partridge [Page 12]RFC 1363 A Proposed Flow Specification September 1992How an Internetwork is Expected to Handle a Flow Spec There are at least two parts to the issue of how an internetwork is expected to handle a flow spec. The first part deals with how the flow spec is interpreted so that the internetwork can find a route which will allow the internetwork to match the flow's requirements. The second part deals with how the network replies to the host's request. The precise mechanism for setting up a flow, given a flow spec, is a large topic and beyond the scope of this memo. The purpose of the next few paragraphs is simply to sketch an argument that this flow spec is sufficient to the requirements of the setup mechanisms known to the author. The key problem in setting up a flow is determining if there exist one or more routes from the source to the destination(s) which might be able to support the quality of service requested. Once one has a route (or set of candidate routes) one can take whatever actions may be appropriate to confirm that the route is actually viable and to cause the flow's data to follow that route. There are a number of ways to find a route. One might try to build a route on the fly by establishing the flow hop-by-hop (as ST-II does) or one might consult a route server which provides a set of candidate source routes derived from a routing database. However, whatever system is used, some basic information about the flow needs to be provided to the routing system. This information is: * How much bandwidth the flow may require. There's no point in routing a flow that expects to send at over 10 megabits per second via a T1 (1.5 megabit per second) link. * How delay sensitive the application is. One does not wish to route a delay-sensitive application over a satellite link, unless the satellite link is the only possible route from here to there. * How much error can be tolerated. Can we send this flow over our microwave channel on a rainy day or is a more reliable link required? * How firm the guarantees need to be. Can we put an Ethernet in as one of the hops? * How much delay variation is tolerated. Again, can an Ethernet be included in the path? Does the routing system need to worry if the addition of this flow will cause a few routers to runPartridge [Page 13]RFC 1363 A Proposed Flow Specification September 1992 at close to capacity? (A side note: we assume that the routers are running with priority queueing systems, so running the router close to capacity doesn't mean that all flows get long and variable delays. Rather, running close to capacity means that high priority flows will be unaffected, and low priority flows will get hit with a lot of delay and variation.) The flow spec provides all of this information. So it seems plausible to assume it provides enough information to make routing decisions at setup time. The flow spec was designed with the expectation that the network would give a yes or no reply to a request for a guaranteed flow. Some researchers have suggested that the negotiation to set up a flow might be an extended negotiation, in which the requesting host initially requests the best possible flow it could desire and then haggles with the network until they agree on a flow with properties that the network can actually provide and the application still finds useful. This notion bothers me for at least two reasons. First, it means setting up a flow is a potentially long process. Second, the general problem of finding all possible routes with a given set of properties is a version of the traveling salesman problem, and I don't want to embed traveling salesman algorithms into a network's routing system. The model used in designing this flow spec was that a system would ask for the minimum level of service that was deemed acceptable and the network would try to find a route that met that level of service. If the network is unable to achieve the desired level of service, it refuses the flow, otherwise it accepts the flow.The Flow Spec as a Return Value This memo does not specify the data structures that the network uses to accept or reject a flow. However, the flow spec has been designed so that it can be used to return the type of service being guaranteed. If the request is being accepted, the minimum delay field could be set to the guaranteed or predicted delay, and the quality of guarantee field could be set to no guarantee (0), imperfect guarantee (100 hex), predicted service (200 hex), or guaranteed service (300 hex). If the request is being rejected, the flow spec could be modified to indicate what type of flow the network believes it could accept e.g., the traffic shape or delay characteristics could be adjusted or thePartridge [Page 14]RFC 1363 A Proposed Flow Specification September 1992 type of guarantee lowered). Note that this returned flow spec would likely be a hint, not a promised offer of service.Why Type of Service is not Good Enough The flow spec proposed in this memo takes the form of a set of parameters describing the properties and requirements of the flow. An alternative approach which is sometimes mentioned (and which is currently incorporated into IP) is to use a Type of Service (TOS) value. The TOS value is an integer (or bit pattern) whose values have been predefined to represent requested quality of services. Thus, a TOS of 47 might request service for a flow using up to 1 gigabit per second of bandwidth with a minimum delay sensitivity of 100 milliseconds. TOS schemes work well if the different quality of services that may be requested are both enumerable and reasonably small. Unfortunately, these conditions do not appear to apply to future internetworks. The range of possible bandwidth requests alone is huge. Combine this range with several gradations of delay requirements, and widely different sensitivities to errors and the set of TOS values required becomes extremely large. (At least one person has suggested to the author that perhaps a TOS field combined with a bandwidth parameter might be appropriate. In other words, a two parameter model. That's a tempting idea but my gut feeling is that it is not quite sufficient so I'm proposing a more complete parametric model.) Another reason to prefer parametric service is optimization issues. A key issue in flow setup is trying to design the the routing system to optimize its management of flows. One can optimize on a number of criteria. A good example of an optimization problem is the following question (expressed by Isidro Castineyra of BBN): "Given a request to establish a flow, how can the internetwork accept that request in such a way as to maximize the chance that the internetwork will also be able to accept the next flow request?" The optimization goal here is call-completion - maximizing the chance that requests to establish flows will succeed. One might alternatively try to maximize revenue (if one is charging for flows). The internetwork is presumably in a better position to do optimizations if it has more information about the flow's expected behavior. For example, if a TOS system says only that a flow isPartridge [Page 15]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -