📄 rfc1978.txt
字号:
Network Working Group D. RandRequest for Comments: 1978 NovellCategory: Informational August 1996 PPP Predictor Compression ProtocolStatus of This Memo This memo provides information for the Internet community. This memo does not specify an Internet standard of any kind. Distribution of this memo is unlimited.Abstract The Point-to-Point Protocol (PPP) [1] provides a standard method of encapsulating multiple protocol datagrams over point-to-point links. The PPP Compression Control Protocol [2] provides a method for transporting multi-protocol datagrams over PPP encapsulated links. This document describes the use of the Predictor data compression algorithm for compressing PPP encapsulated packets.Table of Contents 1. Introduction ...................................... 1 2. Licensing ......................................... 2 3. Predictor Packets ................................. 2 3.1 Predictor theory ............................ 2 3.2 Encapsulation for Predictor type 1 .......... 7 3.3 Encapsulation for Predictor type 2 .......... 8 4. Configuration Option Format ....................... 9 SECURITY CONSIDERATIONS .................................. 9 REFERENCES ............................................... 9 ACKNOWLEDGEMENTS ......................................... 9 CHAIR'S ADDRESS .......................................... 9 AUTHOR'S ADDRESS ......................................... 91. Introduction Predictor is a high speed compression algorithm, available without license fees. The compression ratio obtained using predictor is not as good as other compression algorithms, but it remains one of the fastest algorithms available. Note that although care has been taken to ensure that the following code does not infringe any patents, there is no assurance that it isRand Informational [Page 1]RFC 1978 Predictor Protocol August 1996 not covered by a patent.2. Licensing There are no license fees or costs associated with using the Predictor algorithm. Use the following code at your own risk.3. Predictor Packets Before any Predictor packets may be communicated, PPP must reach the Network-Layer Protocol phase, and the Compression Control Protocol must reach the Opened state. Exactly one Predictor datagram is encapsulated in the PPP Information field, where the PPP Protocol field indicates type hex 00FD (compressed datagram). The maximum length of the Predictor datagram transmitted over a PPP link is the same as the maximum length of the Information field of a PPP encapsulated packet. Prior to compression, the uncompressed data begins with the PPP Protocol number. This value MAY be compressed when Protocol-Field- Compression is negotiated. PPP Link Control Protocol packets MUST NOT be send within compressed data.3.1. Predictor theory Predictor works by filling a guess table with values, based on the hash of the previous characters seen. Since we are either emitting the source data, or depending on the guess table, we add a flag bit for every byte of input, telling the decompressor if it should retrieve the byte from the compressed data stream, or the guess table. Blocking the input into groups of 8 characters means that we don't have to bit-insert the compressed output - a flag byte preceeds every 8 bytes of compressed data. Each bit of the flag byte corresponds to one byte of reconstructed data.Take the source file:000000 4141 4141 4141 410a 4141 4141 4141 410a AAAAAAA.AAAAAAA.000010 4141 4141 4141 410a 4141 4141 4141 410a AAAAAAA.AAAAAAA.000020 4142 4142 4142 410a 4241 4241 4241 420a ABABABA.BABABAB.000030 7878 7878 7878 780a xxxxxxx.Rand Informational [Page 2]RFC 1978 Predictor Protocol August 1996Compressing the above data yields the following:000000 6041 4141 4141 0a60 4141 4141 410a 6f41 `AAAAA.`AAAAA.oA000010 0a6f 410a 4142 4142 4142 0a60 4241 4241 .oA.ABABAB.`BABA000020 420a 6078 7878 7878 0a B.`xxxxx.Reading the above data says:flag = 0x60 - 2 bytes in this block were guessed correctly, 5 and 6. Reconstructed data is: 0 1 2 3 4 5 6 7 File: A A A A A Guess table: A Aflag = 0x60 - 2 bytes in this block were guessed correctly, 5 and 6. Reconstructed data is: 0 1 2 3 4 5 6 7 File: A A A A A Guess table: A Aflag = 0x6f - 6 bytes in this block were guessed correctly, 0-3, 5 and 6. Reconstructed data is: 0 1 2 3 4 5 6 7 File: A Guess table: A A A A A Aflag = 0x6f - 6 bytes in this block were guessed correctly, 0-3, 5 and 6. Reconstructed data is: 0 1 2 3 4 5 6 7 File: A Guess table: A A A A A Aflag = 0x41 - 2 bytes in this block were guessed correctly, 0 and 6. Reconstructed data is: 0 1 2 3 4 5 6 7 File: B A B A B Guess table: A Aflag = 0x60 - 2 bytes in this block were guessed correctly, 5 and 6. Reconstructed data is: 0 1 2 3 4 5 6 7 File: B A B A B Guess table: A Bflag = 0x60 - 2 bytes in this block were guessed correctly, 5 and 6 Reconstructed data is: 0 1 2 3 4 5 6 7 File: x x x x x Guess table: x x And now, on to the source - note that it has been modified to work with a split block. If your data stream can't be split within a block (e.g., compressing packets), then the code dealing with "final", and the memcpy are not required. You can detect this situation (or errors, for that matter) by observing that the flag byte indicates that more data is required from the compressed data stream, but you are out of data (len in decompress is <= 0). It *is* ok if len == 0, and flags indicate guess table usage. #include <stdio.h> #ifdef __STDC__Rand Informational [Page 3]RFC 1978 Predictor Protocol August 1996 #include <stdlib.h> #endif #include <string.h> /* * pred.c -- Test program for Dave Rand's rendition of the * predictor algorithm * Updated by: iand@labtam.labtam.oz.au (Ian Donaldson) * Updated by: Carsten Bormann <cabo@cs.tu-berlin.de> * Original : Dave Rand <dlr@bungi.com>/<dave_rand@novell.com> */ /* The following hash code is the heart of the algorithm: * It builds a sliding hash sum of the previous 3-and-a-bit * characters which will be used to index the guess table. * A better hash function would result in additional compression, * at the expense of time. */ #define HASH(x) Hash = (Hash << 4) ^ (x) static unsigned short int Hash; static unsigned char GuessTable[65536]; static int compress(source, dest, len) unsigned char *source, *dest; int len; { int i, bitmask; unsigned char *flagdest, flags, *orgdest; orgdest = dest; while (len) { flagdest = dest++; flags = 0; /* All guess wrong initially */ for (bitmask=1, i=0; i < 8 && len; i++, bitmask <<= 1) { if (GuessTable[Hash] == *source) { flags |= bitmask; /* Guess was right - don't output */ } else { GuessTable[Hash] = *source; *dest++ = *source; /* Guess wrong, output char */ } HASH(*source++);len--; } *flagdest = flags; } return(dest - orgdest); } static intRand Informational [Page 4]RFC 1978 Predictor Protocol August 1996 decompress(source, dest, lenp, final) unsigned char *source, *dest; int *lenp, final; { int i, bitmask; unsigned char flags, *orgdest; int len = *lenp; orgdest = dest; while (len >= 9) { flags = *source++; for (i=0, bitmask = 1; i < 8; i++, bitmask <<= 1) { if (flags & bitmask) { *dest = GuessTable[Hash]; /* Guess correct */ } else { GuessTable[Hash] = *source; /* Guess wrong */ *dest = *source++; /* Read from source */ len--; } HASH(*dest++); } len--; } while (final && len) { flags = *source++;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -