📄 rfc2966.txt
字号:
To prevent confusion, this document states again that when a router computes IP routes, it must give the same preference to IP routes advertised in an "IP Internal Reachability Information" TLV and IP routes advertised in an "IP External Reachability Information" TLV. RFC 1195 states this quite clearly in the note in paragraph 3.10.2, item 2c). This document does not alter this rule of preference. NOTE: Internal routes (routes to destinations announced in the "IP Internal Reachability Information" field), and external routes using internal metrics (routes to destinations announced in the "IP External Reachability Information" field, with a metric of type "internal") are treated identically for the purpose of the order of preference of routes, and the Dijkstra calculation. Informational [Page 5]RFC 2966 Domain-wide Prefix Distribution October 2000 However, IP routes advertised in "IP External Reachability Information" with external metric-type must be given less preference than the same IP routes advertised with internal-metric type, regardless of the value of the metrics. While IS-IS routers must not give different preference to IP prefixes learned via "IP Internal Reachability Information" and "IP External Reachability Information" when executing the Dijkstra calculation, routers that implement multiple IGPs are free to use this distinction between internal and external routes when comparing routes derived from different IGPs for inclusion in their global RIB.2.2 Definition of external IP prefixes in level 1 LSPs RFC 1195 does not define the "IP External Reachability Information" TLV for L1 LSPs. However, there is no reason why an IS-IS implementation could not allow for redistribution of external routes into L1. Some IS-IS implementations already allow network administrators to do this. This document loosens the restrictions in RFC 1195, and allows for the inclusion of the "IP External Reachability Information" TLV in L1 LSPs. RFC 1195 defines that IP routes learned via L1 routing must always be advertised in L2 LSPs in a "IP Internal Reachability Information" TLV. Now that this document allows "IP External Reachability Information" TLVs in L1 LSPs, and allows for the advertisement of routes learned via L2 routing into L1, the above rule needs a extensions. When a L1L2 router advertises a L1 route into L2, where that L1 route was learned via a prefix advertised in a "IP External Reachability Information" TLV, that L1L2 router should advertise that prefix in its L2 LSP within an "IP External Reachability Information" TLV. L1 routes learned via an "IP Internal Reachability Information" TLV should still be advertised within a "IP Internal Reachability Information" TLV. These rules should also be applied when advertising IP routes derived from L2 routing into L1. Of course in this case also the up/down bit must be set. RFC 1195 defines that if a router sees the same external prefix advertised by two or more routers with the same external metric, it must select the route that is advertised by the router that is closest to itself. It should be noted that now that external routes can be advertised from L1 into L2, and vice versa, that the router that advertises an external prefix in its LSP might not be the router that originally injected this prefix into the IS-IS domain. Therefore, it is less useful to advertise external routes with external metrics into other levels. Informational [Page 6]RFC 2966 Domain-wide Prefix Distribution October 20003. Types of IP routes in IS-IS and their order of preference RFC 1195 and this document defines several ways of advertising IP routes in IS-IS. There are four variables involved. 1) The level of the LSP in which the route is advertised. There are currently two possible values: level 1 and level 2 2) The route-type, which can be derived from the type of TLV in which the prefix is advertised. Internal routes are advertised in IP Internal Reachability Information TLVs (TLV 128), and external routes are advertised in IP External Reachability Information TLVs (TLV 130). 3) The metric-type: Internal or External. The metric-type is derived from the Internal/External metric-type bit in the metric field (bit 7). 4) The fact whether this route is leaked down in the hierarchy, and thus can not be advertised back up. This information can be derived from the newly defined up/down bit in the default metric field.3.1 Overview of all types of IP prefixes in IS-IS Link State PDUs The combination IP Internal Reachability Information and external metric-type is not allowed. Also the up/down bit is never set in L2 LSPs. This leaves us with 8 different types of IP advertisements in IS-IS. However, there are more than 8 reasons for IP prefixes to be advertised in IS-IS. The following tables describe the types of IP prefixes and how they are encoded. 1) L1 intra-area routes These are advertised in L1 LSPs, in TLV 128. The up/down bit is set to zero, metric-type is internal metric. These IP prefixes are directly connected to the advertising router. 2) L1 external routes These are advertised in L1 LSPs, in TLV 130. The up/down bit is set to zero, metric-type is internal metric. These IP prefixes are learned from other IGPs, and are usually not directly connected to the advertising router. Informational [Page 7]RFC 2966 Domain-wide Prefix Distribution October 2000 3) L2 intra-area routes These are advertised in L2 LSPs, in TLV 128. The up/down bit is set to zero, metric-type is internal metric. These IP prefixes are directly connected to the advertising router. These prefixes can not be distinguished from L1->L2 inter-area routes. 4) L2 external routes These are advertised in L2 LSPs, in TLV 130. The up/down bit is set to zero, metric-type is internal metric. These IP prefixes are learned from other IGPs, and are usually not directly connected to the advertising router. These prefixes can not be distinguished from L1->L2 inter-area external routes. 5) L1->L2 inter-area routes These are advertised in L2 LSPs, in TLV 128. The up/down bit is set to zero, metric-type is internal metric. These IP prefixes are learned via L1 routing, and were derived during the L1 SPF computation from prefixes advertised in L1 LSPs in TLV 128. These prefixes can not be distinguished from L2 intra-area routes. 6) L1->L2 inter-area external routes These are advertised in L2 LSPs, in TLV 130. The up/down bit is set to zero, metric-type is internal metric. These IP prefixes are learned via L1 routing, and were derived during the L1 SPF computation from prefixes advertised in L1 LSPs in TLV 130. These prefixes can not be distinguished from L2 external routes. 7) L2->L1 inter-area routes These are advertised in L1 LSPs, in TLV 128. The up/down bit is set to one, metric-type is internal metric. These IP prefixes are learned via L2 routing, and were derived during the L2 SPF computation from prefixes advertised in TLV 128. 8) L2->L1 inter-area external routes These are advertised in L1 LSPs, in TLV 130. The up/down bit is set to one, metric-type is internal metric. These IP prefixes are learned via L2 routing, and were derived during the L2 SPF computation from prefixes advertised in L2 LSPs in TLV 130. Informational [Page 8]RFC 2966 Domain-wide Prefix Distribution October 2000 9) L1 external routes with external metric These are advertised in L1 LSPs, in TLV 130. The up/down bit is set to zero, metric-type is external metric. These IP prefixes are learned from other IGPs, and are usually not directly connected to the advertising router. 10) L2 external routes with external metric These are advertised in L2 LSPs, in TLV 130. The up/down bit is set to zero, metric-type is external metric. These IP prefixes are learned from other IGPs, and are usually not directly connected to the advertising router. These prefixes can not be distinguished from L1->L2 inter-area external routes with external metric. 11) L1->L2 inter-area external routes with external metric These are advertised in L2 LSPs, in TLV 130. The up/down bit is set to zero, metric-type is external metric. These IP prefixes are learned via L1 routing, and were derived during the L1 SPF computation from prefixes advertised in L1 LSPs in TLV 130 with external metrics. These prefixes can not be distinguished from L2 external routes with external metric. 12) L2->L1 inter-area external routes with external metric These are advertised in L1 LSPs, in TLV 130. The up/down bit is set to one, metric-type is external metric. These IP prefixes are learned via L2 routing, and were derived during the L1 SPF computation from prefixes advertised in L2 LSPs in TLV 130 with external metrics.3.2 Order of preference for all types of IP routes in IS-IS Unfortunately IS-IS cannot depend on metrics alone for route selection. Some types of routes must always preferred over others, regardless of the costs that were computed in the Dijkstra calculation. One of the reasons for this is that inter-area routes can only be advertised with a maximum metric of 63. Another reason is that this maximum value of 63 does not mean infinity (e.g. like a hop count of 16 in RIP denotes unreachable). Introducing a value for infinity cost in IS-IS inter-area routes would introduce counting- to-infinity behavior via two or more L1L2 routers, which would have a bad impact on network stability. The order of preference of IP routes in IS-IS is based on a few assumptions. Informational [Page 9]RFC 2966 Domain-wide Prefix Distribution October 2000 - RFC 1195 defines that routes derived from L1 routing are preferred over routes derived from L2 routing. - The note in RFC 1195 paragraph 3.10.2, item 2c) defines that internal routes with internal metric-type and external prefixes with internal metric-type have the same preference. - RFC 1195 defines that external routes with internal metric-type are preferred over external routes with external metric type. - Routes derived from L2 routing are preferred over L2->L1 routes derived from L1 routing. Based on these assumptions, this document defines the following route preferences. 1) L1 intra-area routes with internal metric L1 external routes with internal metric 2) L2 intra-area routes with internal metric
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -