📄 rfc2751.txt
字号:
RFC 2751 Signaled Preemption Priority Policy Element January 20005.1.2 Take highest priority All PREEMPTION_PRI elements participate in the merged reservation. This strategy disassociates priority and QoS level, and therefore is highly subject to free-riders and its inverse image, denial of service. This is not a recommended method, but may be simpler to implement.5.1.3 Force error on heterogeneous merge A PREEMPTION_PRI element may participate in a merged reservation only if all other flows in the merged reservation have the same QoS level (homogeneous flows). The reasoning for this approach assumes that the heterogeneous case is relatively rare and too complicated to deal with, thus it better be prohibited. This strategy lends itself to denial of service, when a single receiver specifying a non-compatible QoS level may cause denial of service for all other receivers of the merged reservation. Note: The determination of heterogeneous flows applies to QoS level only (FLOWSPEC values), and is a matter for local (LDP) definition. Other types of heterogeneous reservations (e.g. conflicting reservation styles) are handled by RSVP and are unrelated to this PREEMPTION_PRI element. This is a recommended merging strategy when reservation homogeneity is coordinated and enforced for the entire multicast tree. It is more restrictive than Section 5.1.1, but is easier to implement.5.2 Modifying Priority Elements When POLICY_DATA objects are protected by integrity, LDPs should not attempt to modify them. They must be forwarded as-is or else their security envelope would be invalidated. In other cases, LDPs may modify and merge incoming PREEMPTION_PRI elements to reduce their size and number according to the following rule: Merging is performed for each merging strategy separately. There is no known algorithm to merge PREEMPTION_PRI element of different merging strategies without loosing valuable information that may affect OTHER nodes.Herzog Standards Track [Page 7]RFC 2751 Signaled Preemption Priority Policy Element January 2000 - For each merging strategy, the highest QoS of all participating PREEMPTION_PRI elements is taken and is placed in an outgoing PREEMPTION_PRI element of this merging strategy. - This approach effectively compresses the number of forwarded PREEMPTION_PRI elements to at most to the number of different merging strategies, regardless of the number of receivers (See the example in Appendix A.2).6 Error Processing A PREEMPTION_PRI error object is sent back toward the appropriate receivers when an error involving PREEMPTION_PRI elements occur. PREEMPTION When a previously admitted flow is preempted, a copy of the preempting flow's PREEMPTION_PRI element is sent back toward the PDP that originated the preempted PREEMPTION_PRI object. This PDP, having information on both the preempting and the preempted priorities may construct a higher priority PREEMPTION_PRI element in an effort to re-instate the preempted flow. Heterogeneity When a flow F1 with Heterogeneous Error merging strategy set in its PREEMPTION_PRI element encounters heterogeneity the PREEMPTION_PRI element is sent back toward receivers with the Heterogeneity error code set.7 IANA Considerations Following the policies outlined in [IANA-CONSIDERATIONS], Standard RSVP Policy Elements (P-type values) are assigned by IETF Consensus action as described in [RSVP-EXT]. P-Type PREEMPTION_PRI is assigned the value 3.8 Security Considerations The integrity of PREEMPTION_PRI is guaranteed, as any other policy element, by the encapsulation into a Policy Data object [RSVP-EXT]. Further security mechanisms are not warranted, especially considering that preemption priority aims to provide simple and quick guidance to routers within a trusted zone or at least a single zone (no zone boundaries are crossed).Herzog Standards Track [Page 8]RFC 2751 Signaled Preemption Priority Policy Element January 20009 References [RSVP-EXT] Herzog, S., "RSVP Extensions for Policy Control", RFC 2750, January 2000. [COPS-RSVP] Boyle, J., Cohen, R., Durham, D., Herzog, S., Raja, R. and A. Sastry, "COPS usage for RSVP", RFC 2749, January 2000. [RAP] Yavatkar, R., et al., "A Framework for Policy Based Admission Control", RFC 2753, January 2000. [COPS] Boyle, J., Cohen, R., Durham, D., Herzog, S., Raja, R. and A. Sastry, "The COPS (Common Open Policy Service) Protocol", RFC 2748, January 2000. [RSVP] Braden, R., ed., et al., "Resource ReSerVation Protocol (RSVP) - Functional Specification", RFC 2205, September 1997. [IANA-CONSIDERATIONS] Alvestrand, H. and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 2434, October 1998.10 Author Information Shai Herzog IPHighway, Inc. 55 New York Avenue Framingham, MA 01701 Phone: (508) 620-1141 EMail: herzog@iphighway.comHerzog Standards Track [Page 9]RFC 2751 Signaled Preemption Priority Policy Element January 2000Appendix A: Example The following examples describe the computation of merged priority elements as well as the translation (compression) of PREEMPTION_PRI elements.A.1 Computing Merged Priority r1 / QoS=Hi (Pr=3, St=Highest QoS) / s1-----A---------B--------r2 QoS=Low (Pr=4, St=Highest PP) \ \ \ \ QoS=Low (Pr=7, St=Highest QoS) r4 r3 QoS=Low (Pr=9, St=Error) Example 1: Merging preemption priority elements Example one describes a multicast scenario with one sender and four receivers each with each own PREEMPTION_PRI element definition. r1, r2 and r3 merge in B. The resulting priority is 4. Reason: The PREEMPTION_PRI of r3 doesn't participate (since r3 is not contributing to the merged QoS) and the priority is the highest of the PREEMPTION_PRI from r1 and r2. r1, r2, r3 and r4 merge in A. The resulting priority is again 4: r4 doesn't participate because its own QoS=Low is incompatible with the other (r1) QoS=High. An error PREEMPTION_PRI should be sent back to r4 telling it that its PREEMPTION_PRI element encountered heterogeneity.Herzog Standards Track [Page 10]RFC 2751 Signaled Preemption Priority Policy Element January 2000A.2 Translation (Compression) of Priority Elements Given this set of participating PREEMPTION_PRI elements, the following compression can take place at the merging node: From: (Pr=3, St=Highest QoS) (Pr=7, St=Highest QoS) (Pr=4, St=Highest PP) (Pr=9, St=Highest PP) (Pr=6, St=Highest PP) To: (Pr=7, St=Highest QoS) (Pr=9, St=Highest PP)Herzog Standards Track [Page 11]RFC 2751 Signaled Preemption Priority Policy Element January 2000Full Copyright Statement Copyright (C) The Internet Society (2000). All Rights Reserved. This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English. The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assigns. This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.Acknowledgement Funding for the RFC Editor function is currently provided by the Internet Society.Herzog Standards Track [Page 12]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -