📄 apr_md5.c
字号:
return APR_SUCCESS;}/* MD5 basic transformation. Transforms state based on block. */static void MD5Transform(UINT4 state[4], const unsigned char block[64]){ UINT4 a = state[0], b = state[1], c = state[2], d = state[3], x[MD5_DIGESTSIZE]; Decode(x, block, 64); /* Round 1 */ FF(a, b, c, d, x[0], S11, 0xd76aa478); /* 1 */ FF(d, a, b, c, x[1], S12, 0xe8c7b756); /* 2 */ FF(c, d, a, b, x[2], S13, 0x242070db); /* 3 */ FF(b, c, d, a, x[3], S14, 0xc1bdceee); /* 4 */ FF(a, b, c, d, x[4], S11, 0xf57c0faf); /* 5 */ FF(d, a, b, c, x[5], S12, 0x4787c62a); /* 6 */ FF(c, d, a, b, x[6], S13, 0xa8304613); /* 7 */ FF(b, c, d, a, x[7], S14, 0xfd469501); /* 8 */ FF(a, b, c, d, x[8], S11, 0x698098d8); /* 9 */ FF(d, a, b, c, x[9], S12, 0x8b44f7af); /* 10 */ FF(c, d, a, b, x[10], S13, 0xffff5bb1); /* 11 */ FF(b, c, d, a, x[11], S14, 0x895cd7be); /* 12 */ FF(a, b, c, d, x[12], S11, 0x6b901122); /* 13 */ FF(d, a, b, c, x[13], S12, 0xfd987193); /* 14 */ FF(c, d, a, b, x[14], S13, 0xa679438e); /* 15 */ FF(b, c, d, a, x[15], S14, 0x49b40821); /* 16 */ /* Round 2 */ GG(a, b, c, d, x[1], S21, 0xf61e2562); /* 17 */ GG(d, a, b, c, x[6], S22, 0xc040b340); /* 18 */ GG(c, d, a, b, x[11], S23, 0x265e5a51); /* 19 */ GG(b, c, d, a, x[0], S24, 0xe9b6c7aa); /* 20 */ GG(a, b, c, d, x[5], S21, 0xd62f105d); /* 21 */ GG(d, a, b, c, x[10], S22, 0x2441453); /* 22 */ GG(c, d, a, b, x[15], S23, 0xd8a1e681); /* 23 */ GG(b, c, d, a, x[4], S24, 0xe7d3fbc8); /* 24 */ GG(a, b, c, d, x[9], S21, 0x21e1cde6); /* 25 */ GG(d, a, b, c, x[14], S22, 0xc33707d6); /* 26 */ GG(c, d, a, b, x[3], S23, 0xf4d50d87); /* 27 */ GG(b, c, d, a, x[8], S24, 0x455a14ed); /* 28 */ GG(a, b, c, d, x[13], S21, 0xa9e3e905); /* 29 */ GG(d, a, b, c, x[2], S22, 0xfcefa3f8); /* 30 */ GG(c, d, a, b, x[7], S23, 0x676f02d9); /* 31 */ GG(b, c, d, a, x[12], S24, 0x8d2a4c8a); /* 32 */ /* Round 3 */ HH(a, b, c, d, x[5], S31, 0xfffa3942); /* 33 */ HH(d, a, b, c, x[8], S32, 0x8771f681); /* 34 */ HH(c, d, a, b, x[11], S33, 0x6d9d6122); /* 35 */ HH(b, c, d, a, x[14], S34, 0xfde5380c); /* 36 */ HH(a, b, c, d, x[1], S31, 0xa4beea44); /* 37 */ HH(d, a, b, c, x[4], S32, 0x4bdecfa9); /* 38 */ HH(c, d, a, b, x[7], S33, 0xf6bb4b60); /* 39 */ HH(b, c, d, a, x[10], S34, 0xbebfbc70); /* 40 */ HH(a, b, c, d, x[13], S31, 0x289b7ec6); /* 41 */ HH(d, a, b, c, x[0], S32, 0xeaa127fa); /* 42 */ HH(c, d, a, b, x[3], S33, 0xd4ef3085); /* 43 */ HH(b, c, d, a, x[6], S34, 0x4881d05); /* 44 */ HH(a, b, c, d, x[9], S31, 0xd9d4d039); /* 45 */ HH(d, a, b, c, x[12], S32, 0xe6db99e5); /* 46 */ HH(c, d, a, b, x[15], S33, 0x1fa27cf8); /* 47 */ HH(b, c, d, a, x[2], S34, 0xc4ac5665); /* 48 */ /* Round 4 */ II(a, b, c, d, x[0], S41, 0xf4292244); /* 49 */ II(d, a, b, c, x[7], S42, 0x432aff97); /* 50 */ II(c, d, a, b, x[14], S43, 0xab9423a7); /* 51 */ II(b, c, d, a, x[5], S44, 0xfc93a039); /* 52 */ II(a, b, c, d, x[12], S41, 0x655b59c3); /* 53 */ II(d, a, b, c, x[3], S42, 0x8f0ccc92); /* 54 */ II(c, d, a, b, x[10], S43, 0xffeff47d); /* 55 */ II(b, c, d, a, x[1], S44, 0x85845dd1); /* 56 */ II(a, b, c, d, x[8], S41, 0x6fa87e4f); /* 57 */ II(d, a, b, c, x[15], S42, 0xfe2ce6e0); /* 58 */ II(c, d, a, b, x[6], S43, 0xa3014314); /* 59 */ II(b, c, d, a, x[13], S44, 0x4e0811a1); /* 60 */ II(a, b, c, d, x[4], S41, 0xf7537e82); /* 61 */ II(d, a, b, c, x[11], S42, 0xbd3af235); /* 62 */ II(c, d, a, b, x[2], S43, 0x2ad7d2bb); /* 63 */ II(b, c, d, a, x[9], S44, 0xeb86d391); /* 64 */ state[0] += a; state[1] += b; state[2] += c; state[3] += d; /* Zeroize sensitive information. */ memset(x, 0, sizeof(x));}/* Encodes input (UINT4) into output (unsigned char). Assumes len is a multiple of 4. */static void Encode(unsigned char *output, const UINT4 *input, unsigned int len){ unsigned int i, j; UINT4 k; for (i = 0, j = 0; j < len; i++, j += 4) { k = input[i]; output[j] = (unsigned char) (k & 0xff); output[j + 1] = (unsigned char) ((k >> 8) & 0xff); output[j + 2] = (unsigned char) ((k >> 16) & 0xff); output[j + 3] = (unsigned char) ((k >> 24) & 0xff); }}/* Decodes input (unsigned char) into output (UINT4). Assumes len is * a multiple of 4. */static void Decode(UINT4 *output, const unsigned char *input, unsigned int len){ unsigned int i, j; for (i = 0, j = 0; j < len; i++, j += 4) output[i] = ((UINT4) input[j]) | (((UINT4) input[j + 1]) << 8) | (((UINT4) input[j + 2]) << 16) | (((UINT4) input[j + 3]) << 24);}#if APR_CHARSET_EBCDICAPR_DECLARE(apr_status_t) apr_MD5InitEBCDIC(apr_xlate_t *xlate){ xlate_ebcdic_to_ascii = xlate; return APR_SUCCESS;}#endif/* * Define the Magic String prefix that identifies a password as being * hashed using our algorithm. */static const char *apr1_id = "$apr1$";/* * The following MD5 password encryption code was largely borrowed from * the FreeBSD 3.0 /usr/src/lib/libcrypt/crypt.c file, which is * licenced as stated at the top of this file. */static void to64(char *s, unsigned long v, int n){ static unsigned char itoa64[] = /* 0 ... 63 => ASCII - 64 */ "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"; while (--n >= 0) { *s++ = itoa64[v&0x3f]; v >>= 6; }}APR_DECLARE(apr_status_t) apr_md5_encode(const char *pw, const char *salt, char *result, size_t nbytes){ /* * Minimum size is 8 bytes for salt, plus 1 for the trailing NUL, * plus 4 for the '$' separators, plus the password hash itself. * Let's leave a goodly amount of leeway. */ char passwd[120], *p; const char *sp, *ep; unsigned char final[MD5_DIGESTSIZE]; int sl, pl, i; apr_md5_ctx_t ctx, ctx1; unsigned long l; /* * Refine the salt first. It's possible we were given an already-hashed * string as the salt argument, so extract the actual salt value from it * if so. Otherwise just use the string up to the first '$' as the salt. */ sp = salt; /* * If it starts with the magic string, then skip that. */ if (!strncmp(sp, apr1_id, strlen(apr1_id))) { sp += strlen(apr1_id); } /* * It stops at the first '$' or 8 chars, whichever comes first */ for (ep = sp; (*ep != '\0') && (*ep != '$') && (ep < (sp + 8)); ep++) { continue; } /* * Get the length of the true salt */ sl = ep - sp; /* * 'Time to make the doughnuts..' */ apr_md5_init(&ctx);#if APR_CHARSET_EBCDIC apr_md5_set_xlate(&ctx, xlate_ebcdic_to_ascii);#endif /* * The password first, since that is what is most unknown */ apr_md5_update(&ctx, (unsigned char *)pw, strlen(pw)); /* * Then our magic string */ apr_md5_update(&ctx, (unsigned char *)apr1_id, strlen(apr1_id)); /* * Then the raw salt */ apr_md5_update(&ctx, (unsigned char *)sp, sl); /* * Then just as many characters of the MD5(pw, salt, pw) */ apr_md5_init(&ctx1); apr_md5_update(&ctx1, (unsigned char *)pw, strlen(pw)); apr_md5_update(&ctx1, (unsigned char *)sp, sl); apr_md5_update(&ctx1, (unsigned char *)pw, strlen(pw)); apr_md5_final(final, &ctx1); for (pl = strlen(pw); pl > 0; pl -= MD5_DIGESTSIZE) { apr_md5_update(&ctx, final, (pl > MD5_DIGESTSIZE) ? MD5_DIGESTSIZE : pl); } /* * Don't leave anything around in vm they could use. */ memset(final, 0, sizeof(final)); /* * Then something really weird... */ for (i = strlen(pw); i != 0; i >>= 1) { if (i & 1) { apr_md5_update(&ctx, final, 1); } else { apr_md5_update(&ctx, (unsigned char *)pw, 1); } } /* * Now make the output string. We know our limitations, so we * can use the string routines without bounds checking. */ strcpy(passwd, apr1_id); strncat(passwd, sp, sl); strcat(passwd, "$"); apr_md5_final(final, &ctx); /* * And now, just to make sure things don't run too fast.. * On a 60 Mhz Pentium this takes 34 msec, so you would * need 30 seconds to build a 1000 entry dictionary... */ for (i = 0; i < 1000; i++) { apr_md5_init(&ctx1); if (i & 1) { apr_md5_update(&ctx1, (unsigned char *)pw, strlen(pw)); } else { apr_md5_update(&ctx1, final, MD5_DIGESTSIZE); } if (i % 3) { apr_md5_update(&ctx1, (unsigned char *)sp, sl); } if (i % 7) { apr_md5_update(&ctx1, (unsigned char *)pw, strlen(pw)); } if (i & 1) { apr_md5_update(&ctx1, final, MD5_DIGESTSIZE); } else { apr_md5_update(&ctx1, (unsigned char *)pw, strlen(pw)); } apr_md5_final(final,&ctx1); } p = passwd + strlen(passwd); l = (final[ 0]<<16) | (final[ 6]<<8) | final[12]; to64(p, l, 4); p += 4; l = (final[ 1]<<16) | (final[ 7]<<8) | final[13]; to64(p, l, 4); p += 4; l = (final[ 2]<<16) | (final[ 8]<<8) | final[14]; to64(p, l, 4); p += 4; l = (final[ 3]<<16) | (final[ 9]<<8) | final[15]; to64(p, l, 4); p += 4; l = (final[ 4]<<16) | (final[10]<<8) | final[ 5]; to64(p, l, 4); p += 4; l = final[11] ; to64(p, l, 2); p += 2; *p = '\0'; /* * Don't leave anything around in vm they could use. */ memset(final, 0, sizeof(final)); apr_cpystrn(result, passwd, nbytes - 1); return APR_SUCCESS;}/* * Validate a plaintext password against a smashed one. Use either * crypt() (if available) or apr_md5_encode(), depending upon the format * of the smashed input password. Return APR_SUCCESS if they match, or * APR_EMISMATCH if they don't. */APR_DECLARE(apr_status_t) apr_password_validate(const char *passwd, const char *hash){ char sample[120];#if !defined(WIN32) && !defined(BEOS) char *crypt_pw;#endif if (!strncmp(hash, apr1_id, strlen(apr1_id))) { /* * The hash was created using our custom algorithm. */ apr_md5_encode(passwd, hash, sample, sizeof(sample)); } else { /* * It's not our algorithm, so feed it to crypt() if possible. */#if defined(WIN32) || defined(BEOS) apr_cpystrn(sample, passwd, sizeof(sample) - 1);#else crypt_pw = crypt(passwd, hash); apr_cpystrn(sample, crypt_pw, sizeof(sample) - 1);#endif } return (strcmp(sample, hash) == 0) ? APR_SUCCESS : APR_EMISMATCH;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -