📄 block.c
字号:
int cr_cbp_tmp;
int nn0,nn1;
int DCcoded=0 ;
Macroblock *currMB = &img->mb_data[img->current_mb_nr];
int qp_per,qp_rem,q_bits;
int b4;
int* DCLevel = img->cofDC[uv+1][0];
int* DCRun = img->cofDC[uv+1][1];
int* ACLevel;
int* ACRun;
qp_per = QP_SCALE_CR[img->qp-MIN_QP]/6;
qp_rem = QP_SCALE_CR[img->qp-MIN_QP]%6;
q_bits = Q_BITS+qp_per;
if (img->type == I_SLICE)
qp_const=(1<<q_bits)/3; // intra
else
qp_const=(1<<q_bits)/6; // inter
for (n2=0; n2 <= BLOCK_SIZE; n2 += BLOCK_SIZE)
{
for (n1=0; n1 <= BLOCK_SIZE; n1 += BLOCK_SIZE)
{
// Horizontal transform.
for (j=0; j < BLOCK_SIZE; j++)
{
mb_y=n2+j;
for (i=0; i < 2; i++)
{
i1=3-i;
m5[i]=img->m7[i+n1][mb_y]+img->m7[i1+n1][mb_y];
m5[i1]=img->m7[i+n1][mb_y]-img->m7[i1+n1][mb_y];
}
img->m7[n1][mb_y] =(m5[0]+m5[1]);
img->m7[n1+2][mb_y]=(m5[0]-m5[1]);
img->m7[n1+1][mb_y]=m5[3]*2+m5[2];
img->m7[n1+3][mb_y]=m5[3]-m5[2]*2;
}
// Vertical transform.
for (i=0; i < BLOCK_SIZE; i++)
{
j1=n1+i;
for (j=0; j < 2; j++)
{
j2=3-j;
m5[j]=img->m7[j1][n2+j]+img->m7[j1][n2+j2];
m5[j2]=img->m7[j1][n2+j]-img->m7[j1][n2+j2];
}
img->m7[j1][n2+0]=(m5[0]+m5[1]);
img->m7[j1][n2+2]=(m5[0]-m5[1]);
img->m7[j1][n2+1]=m5[3]*2+m5[2];
img->m7[j1][n2+3]=m5[3]-m5[2]*2;
}
}
}
// 2X2 transform of DC coeffs.
m1[0]=(img->m7[0][0]+img->m7[4][0]+img->m7[0][4]+img->m7[4][4]);
m1[1]=(img->m7[0][0]-img->m7[4][0]+img->m7[0][4]-img->m7[4][4]);
m1[2]=(img->m7[0][0]+img->m7[4][0]-img->m7[0][4]-img->m7[4][4]);
m1[3]=(img->m7[0][0]-img->m7[4][0]-img->m7[0][4]+img->m7[4][4]);
// Quant of chroma 2X2 coeffs.
run=-1;
scan_pos=0;
for (coeff_ctr=0; coeff_ctr < 4; coeff_ctr++)
{
run++;
ilev=0;
level =(abs(m1[coeff_ctr]) * quant_coef[qp_rem][0][0] + 2*qp_const) >> (q_bits+1);
if (level != 0)
{
currMB->cbp_blk |= 0xf0000 << (uv << 2) ; // if one of the 2x2-DC levels is != 0 set the
cr_cbp=max(1,cr_cbp); // coded-bit all 4 4x4 blocks (bit 16-19 or 20-23)
DCcoded = 1 ;
DCLevel[scan_pos] = sign(level ,m1[coeff_ctr]);
DCRun [scan_pos] = run;
scan_pos++;
run=-1;
ilev=level*dequant_coef[qp_rem][0][0]<<qp_per;
}
m1[coeff_ctr]=sign(ilev,m1[coeff_ctr]);
}
DCLevel[scan_pos] = 0;
// Invers transform of 2x2 DC levels
img->m7[0][0]=(m1[0]+m1[1]+m1[2]+m1[3])>>1;
img->m7[4][0]=(m1[0]-m1[1]+m1[2]-m1[3])>>1;
img->m7[0][4]=(m1[0]+m1[1]-m1[2]-m1[3])>>1;
img->m7[4][4]=(m1[0]-m1[1]-m1[2]+m1[3])>>1;
// Quant of chroma AC-coeffs.
coeff_cost=0;
cr_cbp_tmp=0;
for (n2=0; n2 <= BLOCK_SIZE; n2 += BLOCK_SIZE)
{
for (n1=0; n1 <= BLOCK_SIZE; n1 += BLOCK_SIZE)
{
b4 = 2*(n2/4) + (n1/4);
ACLevel = img->cofAC[uv+4][b4][0];
ACRun = img->cofAC[uv+4][b4][1];
run=-1;
scan_pos=0;
for (coeff_ctr=1; coeff_ctr < 16; coeff_ctr++)// start change rd_quant
{
if (img->field_picture || ( mb_adaptive && img->field_mode ))
{ // Alternate scan for field coding
i=FIELD_SCAN[coeff_ctr][0];
j=FIELD_SCAN[coeff_ctr][1];
}
else
{
i=SNGL_SCAN[coeff_ctr][0];
j=SNGL_SCAN[coeff_ctr][1];
}
++run;
ilev=0;
level=(abs(img->m7[n1+i][n2+j])*quant_coef[qp_rem][i][j]+qp_const)>>q_bits;
if (level != 0)
{
currMB->cbp_blk |= 1 << (16 + (uv << 2) + ((n2 >> 1) + (n1 >> 2))) ;
if (level > 1)
coeff_cost += MAX_VALUE; // set high cost, shall not be discarded
else
coeff_cost += COEFF_COST[run];
cr_cbp_tmp=2;
ACLevel[scan_pos] = sign(level,img->m7[n1+i][n2+j]);
ACRun [scan_pos] = run;
++scan_pos;
run=-1;
ilev=level*dequant_coef[qp_rem][i][j]<<qp_per;
}
img->m7[n1+i][n2+j]=sign(ilev,img->m7[n1+i][n2+j]); // for use in IDCT
}
ACLevel[scan_pos] = 0;
}
}
// * reset chroma coeffs
if(coeff_cost < _CHROMA_COEFF_COST_)
{
cr_cbp_tmp = 0 ;
for (n2=0; n2 <= BLOCK_SIZE; n2 += BLOCK_SIZE)
{
for (n1=0; n1 <= BLOCK_SIZE; n1 += BLOCK_SIZE)
{
b4 = 2*(n2/4) + (n1/4);
ACLevel = img->cofAC[uv+4][b4][0];
ACRun = img->cofAC[uv+4][b4][1];
if( DCcoded == 0) currMB->cbp_blk &= ~(0xf0000 << (uv << 2)); // if no chroma DC's: then reset coded-bits of this chroma subblock
nn0 = (n1>>2) + (uv<<1);
nn1 = 4 + (n2>>2) ;
ACLevel[0] = 0;
for (coeff_ctr=1; coeff_ctr < 16; coeff_ctr++)// ac coeff
{
if (img->field_picture || ( mb_adaptive && img->field_mode ))
{ // Alternate scan for field coding
i=FIELD_SCAN[coeff_ctr][0];
j=FIELD_SCAN[coeff_ctr][1];
}
else
{
i=SNGL_SCAN[coeff_ctr][0];
j=SNGL_SCAN[coeff_ctr][1];
}
img->m7[n1+i][n2+j]=0;
ACLevel[coeff_ctr] = 0;
}
}
}
}
if(cr_cbp_tmp==2)
cr_cbp = 2;
// IDCT.
// Horizontal.
for (n2=0; n2 <= BLOCK_SIZE; n2 += BLOCK_SIZE)
{
for (n1=0; n1 <= BLOCK_SIZE; n1 += BLOCK_SIZE)
{
for (j=0; j < BLOCK_SIZE; j++)
{
for (i=0; i < BLOCK_SIZE; i++)
{
m5[i]=img->m7[n1+i][n2+j];
}
m6[0]=(m5[0]+m5[2]);
m6[1]=(m5[0]-m5[2]);
m6[2]=(m5[1]>>1)-m5[3];
m6[3]=m5[1]+(m5[3]>>1);
for (i=0; i < 2; i++)
{
i1=3-i;
img->m7[n1+i][n2+j]=m6[i]+m6[i1];
img->m7[n1+i1][n2+j]=m6[i]-m6[i1];
}
}
// Vertical.
for (i=0; i < BLOCK_SIZE; i++)
{
for (j=0; j < BLOCK_SIZE; j++)
{
m5[j]=img->m7[n1+i][n2+j];
}
m6[0]=(m5[0]+m5[2]);
m6[1]=(m5[0]-m5[2]);
m6[2]=(m5[1]>>1)-m5[3];
m6[3]=m5[1]+(m5[3]>>1);
for (j=0; j < 2; j++)
{
j2=3-j;
img->m7[n1+i][n2+j] =min(255,max(0,(m6[j]+m6[j2]+(img->mpr[n1+i][n2+j] <<DQ_BITS)+DQ_ROUND)>>DQ_BITS));
img->m7[n1+i][n2+j2]=min(255,max(0,(m6[j]-m6[j2]+(img->mpr[n1+i][n2+j2]<<DQ_BITS)+DQ_ROUND)>>DQ_BITS));
}
}
}
}
// Decoded block moved to memory
for (j=0; j < BLOCK_SIZE*2; j++)
for (i=0; i < BLOCK_SIZE*2; i++)
enc_picture->imgUV[uv][img->pix_c_y+j][img->pix_c_x+i]= img->m7[i][j];
return cr_cbp;
}
/*!
************************************************************************
* \brief
* The routine performs transform,quantization,inverse transform, adds the diff.
* to the prediction and writes the result to the decoded luma frame. Includes the
* RD constrained quantization also.
*
* \para Input:
* block_x,block_y: Block position inside a macro block (0,4,8,12).
*
* \para Output:
* nonzero: 0 if no levels are nonzero. 1 if there are nonzero levels. \n
* coeff_cost: Counter for nonzero coefficients, used to discard expencive levels.
*
*
************************************************************************
*/
int dct_luma_sp(int block_x,int block_y,int *coeff_cost)
{
int sign(int a,int b);
int i,j,i1,j1,ilev,m5[4],m6[4],coeff_ctr;
int qp_const,level,scan_pos,run;
int nonzero;
int predicted_block[BLOCK_SIZE][BLOCK_SIZE],c_err,qp_const2;
int qp_per,qp_rem,q_bits;
int qp_per_sp,qp_rem_sp,q_bits_sp;
int pos_x = block_x/BLOCK_SIZE;
int pos_y = block_y/BLOCK_SIZE;
int b8 = 2*(pos_y/2) + (pos_x/2);
int b4 = 2*(pos_y%2) + (pos_x%2);
int* ACLevel = img->cofAC[b8][b4][0];
int* ACRun = img->cofAC[b8][b4][1];
// For encoding optimization
int c_err1, c_err2, level1, level2;
double D_dis1, D_dis2;
int len, info;
double lambda_mode = 0.85 * pow (2, img->qp/3.0) * 4;
qp_per = (img->qp-MIN_QP)/6;
qp_rem = (img->qp-MIN_QP)%6;
q_bits = Q_BITS+qp_per;
qp_per_sp = (img->qpsp-MIN_QP)/6;
qp_rem_sp = (img->qpsp-MIN_QP)%6;
q_bits_sp = Q_BITS+qp_per_sp;
qp_const=(1<<q_bits)/6; // inter
qp_const2=(1<<q_bits_sp)/2; //sp_pred
// Horizontal transform
for (j=0; j< BLOCK_SIZE; j++)
for (i=0; i< BLOCK_SIZE; i++)
{
img->m7[i][j]+=img->mpr[i+block_x][j+block_y];
predicted_block[i][j]=img->mpr[i+block_x][j+block_y];
}
for (j=0; j < BLOCK_SIZE; j++)
{
for (i=0; i < 2; i++)
{
i1=3-i;
m5[i]=img->m7[i][j]+img->m7[i1][j];
m5[i1]=img->m7[i][j]-img->m7[i1][j];
}
img->m7[0][j]=(m5[0]+m5[1]);
img->m7[2][j]=(m5[0]-m5[1]);
img->m7[1][j]=m5[3]*2+m5[2];
img->m7[3][j]=m5[3]-m5[2]*2;
}
// Vertival transform
for (i=0; i < BLOCK_SIZE; i++)
{
for (j=0; j < 2; j++)
{
j1=3-j;
m5[j]=img->m7[i][j]+img->m7[i][j1];
m5[j1]=img->m7[i][j]-img->m7[i][j1];
}
img->m7[i][0]=(m5[0]+m5[1]);
img->m7[i][2]=(m5[0]-m5[1]);
img->m7[i][1]=m5[3]*2+m5[2];
img->m7[i][3]=m5[3]-m5[2]*2;
}
for (j=0; j < BLOCK_SIZE; j++)
{
for (i=0; i < 2; i++)
{
i1=3-i;
m5[i]=predicted_block[i][j]+predicted_block[i1][j];
m5[i1]=predicted_block[i][j]-predicted_block[i1][j];
}
predicted_block[0][j]=(m5[0]+m5[1]);
predicted_block[2][j]=(m5[0]-m5[1]);
predicted_block[1][j]=m5[3]*2+m5[2];
predicted_block[3][j]=m5[3]-m5[2]*2;
}
// Vertival transform
for (i=0; i < BLOCK_SIZE; i++)
{
for (j=0; j < 2; j++)
{
j1=3-j;
m5[j]=predicted_block[i][j]+predicted_block[i][j1];
m5[j1]=predicted_block[i][j]-predicted_block[i][j1];
}
predicted_block[i][0]=(m5[0]+m5[1]);
predicted_block[i][2]=(m5[0]-m5[1]);
predicted_block[i][1]=m5[3]*2+m5[2];
predicted_block[i][3]=m5[3]-m5[2]*2;
}
// Quant
nonzero=FALSE;
run=-1;
scan_pos=0;
for (coeff_ctr=0;coeff_ctr < 16;coeff_ctr++) // 8 times if double scan, 16 normal scan
{
if (img->field_picture || ( mb_adaptive && img->field_mode ))
{ // Alternate scan for field coding
i=FIELD_SCAN[coeff_ctr][0];
j=FIELD_SCAN[coeff_ctr][1];
}
else
{
i=SNGL_SCAN[coeff_ctr][0];
j=SNGL_SCAN[coeff_ctr][1];
}
run++;
ilev=0;
// decide prediction
// case 1
level1 = (abs (predicted_block[i][j]) * quant_coef[qp_rem_sp][i][j] + qp_const2) >> q_bits_sp;
level1 = (level1 << q_bits_sp) / quant_coef[qp_rem_sp][i][j];
c_err1 = img->m7[i][j]-sign(level1, predicted_block[i][j]);
level1 = (abs (c_err1) * quant_coef[qp_rem][i][j] + qp_const) >> q_bits;
// case 2
c_err2=img->m7[i][j]-predicted_block[i][j];
level2 = (abs (c_err2) * quant_coef[qp_rem][i][j] + qp_const) >> q_bits;
// select prediction
if ((level1 != level2) && (level1 != 0) && (level2 != 0))
{
D_dis1 = img->m7[i][j] - ((sign(level1,c_err1)*dequant_coef[qp_rem][i][j]*A[i][j]<< qp_per) >>6) - predicted_block[i][j];
levrun_linfo_inter(level1, run, &len, &info);
D_dis1 = D_dis1*D_dis1 + lambda_mode * len;
D_dis2 = img->m7[i][j] - ((sign(level2,c_err2)*dequant_coef[qp_rem][i][j]*A[i][j]<< qp_per) >>6) - predicted_block[i][j];
levrun_linfo_inter(level2, run, &len, &info);
D_dis2 = D_dis2 * D_dis2 + lambda_mode * len;
if (D_dis1 == D_dis2)
level = (abs(level1) < abs(level2)) ? level1 : level2;
else
{
if (D_dis1 < D_dis2)
level = level1;
else
level = level2;
}
c_err = (level == level1) ? c_err1 : c_err2;
}
else if (level1 == level2)
{
level = level1;
c_err = c_err1;
}
else
{
level = (level1 == 0) ? level1 : level2;
c_err = (level1 == 0) ? c_err1 : c_err2;
}
if (level != 0)
{
nonzero=TRUE;
if (level > 1)
*coeff_cost += MAX_VALUE; // set high cost, shall not be discarded
else
*coeff_cost += COEFF_COST[run];
ACLevel[scan_pos] = sign(level,c_err);
ACRun [scan_pos] = run;
++scan_pos;
run=-1; // reset zero level counter
ilev=((sign(level,c_err)*dequant_coef[qp_rem][i][j]*A[i][j]<< qp_per) >>6);
}
ilev+=predicted_block[i][j] ;
img->m7[i][j] = sign((abs(ilev) * quant_coef[qp_rem_sp][i][j] + qp_const2)>> q_bits_sp, ilev) * dequant_coef[qp_rem_sp][i][j] << qp_per_sp;
}
ACLevel[scan_pos] = 0;
// IDCT.
// horizontal
for (j=0; j < BLOCK_SIZE; j++)
{
for (i=0; i < BLOCK_SIZE; i++)
{
m5[i]=img->m7[i][j];
}
m6[0]=(m5[0]+m5[2]);
m6[1]=(m5[0]-m5[2]);
m6[2]=(m5[1]>>1)-m5[3];
m6[3]=m5[1]+(m5[3]>>1);
for (i=0; i < 2; i++)
{
i1=3-i;
img->m7[i][j]=m6[i]+m6[i1];
img->m7[i1][j]=m6[i]-m6[i1];
}
}
// vertical
for (i=0; i < BLOCK_SIZE; i++)
{
for (j=0; j < BLOCK_SIZE; j++)
{
m5[j]=img->m7[i][j];
}
m6[0]=(m5[0]+m5[2]);
m6[1]=(m5[0]-m5[2]);
m6[2]=(m5[1]>>1)-m5[3];
m6[3]=m5[1]+(m5[3]>>1);
for (j=0; j < 2; j++)
{
j1=3-j;
img->m7[i][j] =min(255,max(0,(m6[j]+m6[j1]+DQ_ROUND)>>DQ_BITS));
img->m7[i][j1]=min(255,max(0,(m6[j]-m6[j1]+DQ_ROUND)>>DQ_BITS));
}
}
// Decoded block moved to frame memory
for (j=0; j < BLOCK_SIZE; j++)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -