📄 block.c
字号:
}
}
}
/*!
************************************************************************
* \brief
* For new intra pred routines
*
* \para Input:
* Image par, 16x16 based intra mode
*
* \para Output:
* none
************************************************************************
*/
int dct_luma_16x16(int new_intra_mode)
{
int qp_const;
int i,j;
int ii,jj;
int i1,j1;
int M1[16][16];
int M4[4][4];
int M5[4],M6[4];
int M0[4][4][4][4];
int run,scan_pos,coeff_ctr,level;
int qp_per,qp_rem,q_bits;
int ac_coef = 0;
int incr=1;
int offset=0;
int b8, b4;
int* DCLevel = img->cofDC[0][0];
int* DCRun = img->cofDC[0][1];
int* ACLevel;
int* ACRun;
qp_per = (img->qp-MIN_QP)/6;
qp_rem = (img->qp-MIN_QP)%6;
q_bits = Q_BITS+qp_per;
qp_const = (1<<q_bits)/3;
if(input->InterlaceCodingOption>=MB_CODING && img->field_mode && mb_adaptive)
{
if(img->top_field)
{
offset = 0;
incr = 2;
}
else
{
offset = -15;
incr = 2;
}
}
for (j=0;j<16;j++)
{
for (i=0;i<16;i++)
{
M1[i][j]=imgY_org[img->pix_y+(incr*j)+offset][img->pix_x+i]-img->mprr_2[new_intra_mode][j][i];
M0[i%4][i/4][j%4][j/4]=M1[i][j];
}
}
for (jj=0;jj<4;jj++)
{
for (ii=0;ii<4;ii++)
{
for (j=0;j<4;j++)
{
for (i=0;i<2;i++)
{
i1=3-i;
M5[i]= M0[i][ii][j][jj]+M0[i1][ii][j][jj];
M5[i1]= M0[i][ii][j][jj]-M0[i1][ii][j][jj];
}
M0[0][ii][j][jj]=M5[0]+M5[1];
M0[2][ii][j][jj]=M5[0]-M5[1];
M0[1][ii][j][jj]=M5[3]*2+M5[2];
M0[3][ii][j][jj]=M5[3]-M5[2]*2;
}
// vertical
for (i=0;i<4;i++)
{
for (j=0;j<2;j++)
{
j1=3-j;
M5[j] = M0[i][ii][j][jj]+M0[i][ii][j1][jj];
M5[j1]= M0[i][ii][j][jj]-M0[i][ii][j1][jj];
}
M0[i][ii][0][jj]=M5[0]+M5[1];
M0[i][ii][2][jj]=M5[0]-M5[1];
M0[i][ii][1][jj]=M5[3]*2+M5[2];
M0[i][ii][3][jj]=M5[3] -M5[2]*2;
}
}
}
// pick out DC coeff
for (j=0;j<4;j++)
for (i=0;i<4;i++)
M4[i][j]= M0[0][i][0][j];
for (j=0;j<4;j++)
{
for (i=0;i<2;i++)
{
i1=3-i;
M5[i]= M4[i][j]+M4[i1][j];
M5[i1]=M4[i][j]-M4[i1][j];
}
M4[0][j]=M5[0]+M5[1];
M4[2][j]=M5[0]-M5[1];
M4[1][j]=M5[3]+M5[2];
M4[3][j]=M5[3]-M5[2];
}
// vertical
for (i=0;i<4;i++)
{
for (j=0;j<2;j++)
{
j1=3-j;
M5[j]= M4[i][j]+M4[i][j1];
M5[j1]=M4[i][j]-M4[i][j1];
}
M4[i][0]=(M5[0]+M5[1])>>1;
M4[i][2]=(M5[0]-M5[1])>>1;
M4[i][1]=(M5[3]+M5[2])>>1;
M4[i][3]=(M5[3]-M5[2])>>1;
}
// quant
run=-1;
scan_pos=0;
for (coeff_ctr=0;coeff_ctr<16;coeff_ctr++)
{
if (img->field_picture || ( mb_adaptive && img->field_mode ))
{ // Alternate scan for field coding
i=FIELD_SCAN[coeff_ctr][0];
j=FIELD_SCAN[coeff_ctr][1];
}
else
{
i=SNGL_SCAN[coeff_ctr][0];
j=SNGL_SCAN[coeff_ctr][1];
}
run++;
level= (abs(M4[i][j]) * quant_coef[qp_rem][0][0] + 2*qp_const)>>(q_bits+1);
if (level != 0)
{
DCLevel[scan_pos] = sign(level,M4[i][j]);
DCRun [scan_pos] = run;
++scan_pos;
run=-1;
}
M4[i][j]=sign(level,M4[i][j]);
}
DCLevel[scan_pos]=0;
// invers DC transform
for (j=0;j<4;j++)
{
for (i=0;i<4;i++)
M5[i]=M4[i][j];
M6[0]=M5[0]+M5[2];
M6[1]=M5[0]-M5[2];
M6[2]=M5[1]-M5[3];
M6[3]=M5[1]+M5[3];
for (i=0;i<2;i++)
{
i1=3-i;
M4[i][j]= M6[i]+M6[i1];
M4[i1][j]=M6[i]-M6[i1];
}
}
for (i=0;i<4;i++)
{
for (j=0;j<4;j++)
M5[j]=M4[i][j];
M6[0]=M5[0]+M5[2];
M6[1]=M5[0]-M5[2];
M6[2]=M5[1]-M5[3];
M6[3]=M5[1]+M5[3];
for (j=0;j<2;j++)
{
j1=3-j;
M0[0][i][0][j] = (((M6[j]+M6[j1])*dequant_coef[qp_rem][0][0]<<qp_per)+2)>>2;
M0[0][i][0][j1]= (((M6[j]-M6[j1])*dequant_coef[qp_rem][0][0]<<qp_per)+2)>>2;
}
}
// AC invers trans/quant for MB
for (jj=0;jj<4;jj++)
{
for (ii=0;ii<4;ii++)
{
run = -1;
scan_pos = 0;
b8 = 2*(jj/2) + (ii/2);
b4 = 2*(jj%2) + (ii%2);
ACLevel = img->cofAC [b8][b4][0];
ACRun = img->cofAC [b8][b4][1];
for (coeff_ctr=1;coeff_ctr<16;coeff_ctr++) // set in AC coeff
{
if (img->field_picture || ( mb_adaptive && img->field_mode ))
{ // Alternate scan for field coding
i=FIELD_SCAN[coeff_ctr][0];
j=FIELD_SCAN[coeff_ctr][1];
}
else
{
i=SNGL_SCAN[coeff_ctr][0];
j=SNGL_SCAN[coeff_ctr][1];
}
run++;
level= ( abs( M0[i][ii][j][jj]) * quant_coef[qp_rem][i][j] + qp_const) >> q_bits;
if (level != 0)
{
ac_coef = 15;
ACLevel[scan_pos] = sign(level,M0[i][ii][j][jj]);
ACRun [scan_pos] = run;
++scan_pos;
run=-1;
}
M0[i][ii][j][jj]=sign(level*dequant_coef[qp_rem][i][j]<<qp_per,M0[i][ii][j][jj]);
}
ACLevel[scan_pos] = 0;
// IDCT horizontal
for (j=0;j<4;j++)
{
for (i=0;i<4;i++)
{
M5[i]=M0[i][ii][j][jj];
}
M6[0]= M5[0]+M5[2];
M6[1]= M5[0]-M5[2];
M6[2]=(M5[1]>>1) -M5[3];
M6[3]= M5[1]+(M5[3]>>1);
for (i=0;i<2;i++)
{
i1=3-i;
M0[i][ii][j][jj] =M6[i]+M6[i1];
M0[i1][ii][j][jj]=M6[i]-M6[i1];
}
}
// vert
for (i=0;i<4;i++)
{
for (j=0;j<4;j++)
M5[j]=M0[i][ii][j][jj];
M6[0]= M5[0]+M5[2];
M6[1]= M5[0]-M5[2];
M6[2]=(M5[1]>>1) -M5[3];
M6[3]= M5[1]+(M5[3]>>1);
for (j=0;j<2;j++)
{
j1=3-j;
M0[i][ii][ j][jj]=M6[j]+M6[j1];
M0[i][ii][j1][jj]=M6[j]-M6[j1];
}
}
}
}
for (j=0;j<16;j++)
{
for (i=0;i<16;i++)
{
M1[i][j]=M0[i%4][i/4][j%4][j/4];
}
}
for (j=0;j<16;j++)
for (i=0;i<16;i++)
enc_picture->imgY[img->pix_y+j][img->pix_x+i]=(byte)min(255,max(0,(M1[i][j]+(img->mprr_2[new_intra_mode][j][i]<<DQ_BITS)+DQ_ROUND)>>DQ_BITS));
return ac_coef;
}
/*!
************************************************************************
* \brief
* The routine performs transform,quantization,inverse transform, adds the diff.
* to the prediction and writes the result to the decoded luma frame. Includes the
* RD constrained quantization also.
*
* \para Input:
* block_x,block_y: Block position inside a macro block (0,4,8,12).
*
* \para Output_
* nonzero: 0 if no levels are nonzero. 1 if there are nonzero levels. \n
* coeff_cost: Counter for nonzero coefficients, used to discard expencive levels.
************************************************************************
*/
int dct_luma(int block_x,int block_y,int *coeff_cost, int old_intra_mode)
{
int sign(int a,int b);
int i,j,i1,j1,ilev,m5[4],m6[4],coeff_ctr;
int qp_const,level,scan_pos,run;
int nonzero;
int qp_per,qp_rem,q_bits;
int pos_x = block_x/BLOCK_SIZE;
int pos_y = block_y/BLOCK_SIZE;
int b8 = 2*(pos_y/2) + (pos_x/2);
int b4 = 2*(pos_y%2) + (pos_x%2);
int* ACLevel = img->cofAC[b8][b4][0];
int* ACRun = img->cofAC[b8][b4][1];
qp_per = (img->qp-MIN_QP)/6;
qp_rem = (img->qp-MIN_QP)%6;
q_bits = Q_BITS+qp_per;
if (img->type == I_SLICE)
qp_const=(1<<q_bits)/3; // intra
else
qp_const=(1<<q_bits)/6; // inter
// Horizontal transform
for (j=0; j < BLOCK_SIZE; j++)
{
for (i=0; i < 2; i++)
{
i1=3-i;
m5[i]=img->m7[i][j]+img->m7[i1][j];
m5[i1]=img->m7[i][j]-img->m7[i1][j];
}
img->m7[0][j]=(m5[0]+m5[1]);
img->m7[2][j]=(m5[0]-m5[1]);
img->m7[1][j]=m5[3]*2+m5[2];
img->m7[3][j]=m5[3]-m5[2]*2;
}
// Vertical transform
for (i=0; i < BLOCK_SIZE; i++)
{
for (j=0; j < 2; j++)
{
j1=3-j;
m5[j]=img->m7[i][j]+img->m7[i][j1];
m5[j1]=img->m7[i][j]-img->m7[i][j1];
}
img->m7[i][0]=(m5[0]+m5[1]);
img->m7[i][2]=(m5[0]-m5[1]);
img->m7[i][1]=m5[3]*2+m5[2];
img->m7[i][3]=m5[3]-m5[2]*2;
}
// Quant
nonzero=FALSE;
run=-1;
scan_pos=0;
for (coeff_ctr=0;coeff_ctr < 16;coeff_ctr++)
{
if (img->field_picture || ( mb_adaptive && img->field_mode ))
{ // Alternate scan for field coding
i=FIELD_SCAN[coeff_ctr][0];
j=FIELD_SCAN[coeff_ctr][1];
}
else
{
i=SNGL_SCAN[coeff_ctr][0];
j=SNGL_SCAN[coeff_ctr][1];
}
run++;
ilev=0;
level = (abs (img->m7[i][j]) * quant_coef[qp_rem][i][j] + qp_const) >> q_bits;
if (level != 0)
{
nonzero=TRUE;
if (level > 1)
*coeff_cost += MAX_VALUE; // set high cost, shall not be discarded
else
*coeff_cost += COEFF_COST[run];
ACLevel[scan_pos] = sign(level,img->m7[i][j]);
ACRun [scan_pos] = run;
++scan_pos;
run=-1; // reset zero level counter
ilev=level*dequant_coef[qp_rem][i][j]<<qp_per;
}
img->m7[i][j]=sign(ilev,img->m7[i][j]);
}
ACLevel[scan_pos] = 0;
// IDCT.
// horizontal
for (j=0; j < BLOCK_SIZE; j++)
{
for (i=0; i < BLOCK_SIZE; i++)
{
m5[i]=img->m7[i][j];
}
m6[0]=(m5[0]+m5[2]);
m6[1]=(m5[0]-m5[2]);
m6[2]=(m5[1]>>1)-m5[3];
m6[3]=m5[1]+(m5[3]>>1);
for (i=0; i < 2; i++)
{
i1=3-i;
img->m7[i][j]=m6[i]+m6[i1];
img->m7[i1][j]=m6[i]-m6[i1];
}
}
// vertical
for (i=0; i < BLOCK_SIZE; i++)
{
for (j=0; j < BLOCK_SIZE; j++)
{
m5[j]=img->m7[i][j];
}
m6[0]=(m5[0]+m5[2]);
m6[1]=(m5[0]-m5[2]);
m6[2]=(m5[1]>>1)-m5[3];
m6[3]=m5[1]+(m5[3]>>1);
for (j=0; j < 2; j++)
{
j1=3-j;
img->m7[i][j] =min(255,max(0,(m6[j]+m6[j1]+(img->mpr[i+block_x][j+block_y] <<DQ_BITS)+DQ_ROUND)>>DQ_BITS));
img->m7[i][j1]=min(255,max(0,(m6[j]-m6[j1]+(img->mpr[i+block_x][j1+block_y]<<DQ_BITS)+DQ_ROUND)>>DQ_BITS));
}
}
// Decoded block moved to frame memory
for (j=0; j < BLOCK_SIZE; j++)
for (i=0; i < BLOCK_SIZE; i++)
enc_picture->imgY[img->pix_y+block_y+j][img->pix_x+block_x+i]=img->m7[i][j];
return nonzero;
}
/*!
************************************************************************
* \brief
* Transform,quantization,inverse transform for chroma.
* The main reason why this is done in a separate routine is the
* additional 2x2 transform of DC-coeffs. This routine is called
* ones for each of the chroma components.
*
* \para Input:
* uv : Make difference between the U and V chroma component \n
* cr_cbp: chroma coded block pattern
*
* \para Output:
* cr_cbp: Updated chroma coded block pattern.
************************************************************************
*/
int dct_chroma(int uv,int cr_cbp)
{
int i,j,i1,j2,ilev,n2,n1,j1,mb_y,coeff_ctr,qp_const,level ,scan_pos,run;
int m1[BLOCK_SIZE],m5[BLOCK_SIZE],m6[BLOCK_SIZE];
int coeff_cost;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -