⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fractint.frm

📁 frasr200的win 版本源码(18.21),使用make文件,使用的vc版本较低,在我的环境下编译有问题! 很不错的分形程序代码!
💻 FRM
📖 第 1 页 / 共 2 页
字号:
  z = Pixel:
   z = ((z/2.7182818)^z)/sqr(6.2831853*z),
    |z| <= 4
  }

Sterling2(XAXIS) {; davisl
  z = Pixel:
   z = ((z/2.7182818)^z)/sqr(6.2831853*z) + pixel,
    |z| <= 4
  }

Sterling3(XAXIS) {; davisl
  z = Pixel:
   z = ((z/2.7182818)^z)/sqr(6.2831853*z) - pixel,
    |z| <= 4
  }

PsudoMandel(XAXIS) {; davisl - try center=0,0/magnification=28
  z = Pixel:
   z = ((z/2.7182818)^z)*sqr(6.2831853*z) + pixel,
    |z| <= 4
  }

{ These are the original "Richard" types sent by Jm Richard-Collard. Their
  generalizations are tacked on to the end of the "Jm" list below, but
  we felt we should keep these around for historical reasons.}

Richard1 (XYAXIS) {; Jm Richard-Collard
  z = pixel:
   sq=z*z, z=(sq*sin(sq)+sq)+pixel,
    |z|<=50
  }

Richard2 (XYAXIS) {; Jm Richard-Collard
  z = pixel:
   z=1/(sin(z*z+pixel*pixel)),
    |z|<=50
  }

Richard3 (XAXIS) {; Jm Richard-Collard
  z = pixel:
   sh=sinh(z), z=(1/(sh*sh))+pixel,
    |z|<=50
  }

Richard4 (XAXIS) {; Jm Richard-Collard
  z = pixel:
   z2=z*z, z=(1/(z2*cos(z2)+z2))+pixel,
    |z|<=50
  }

Richard5 (XAXIS) {; Jm Richard-Collard
  z = pixel:
   z=sin(z*sinh(z))+pixel,
    |z|<=50
  }

Richard6 (XYAXIS) {; Jm Richard-Collard
  z = pixel:
   z=sin(sinh(z))+pixel,
    |z|<=50
  }

Richard7 (XAXIS) {; Jm Richard-Collard
  z=pixel:
   z=log(z)*pixel,
    |z|<=50
  }

Richard8 (XYAXIS) {; Jm Richard-Collard
  ; This was used for the "Fractal Creations" cover
  z=pixel,sinp = sin(pixel):
   z=sin(z)+sinp,
    |z|<=50
  }

Richard9 (XAXIS) {; Jm Richard-Collard
  z=pixel:
   sqrz=z*z, z=sqrz + 1/sqrz + pixel,
    |z|<=4
  }

Richard10(XYAXIS) {; Jm Richard-Collard
  z=pixel:
   z=1/sin(1/(z*z)),
    |z|<=50
  }

Richard11(XYAXIS) {; Jm Richard-Collard
  z=pixel:
   z=1/sinh(1/(z*z)),
    |z|<=50
  }

{ These types are generalizations of types sent to us by the French
  mathematician Jm Richard-Collard. If we hadn't generalized them
  there would be --ahhh-- quite a few. With 11 possible values for
  each fn variable,Jm_03, for example, has 14641 variations! }

Jm_01 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=(fn1(fn2(z^pixel)))*pixel,
    |z|<=t
  }

Jm_02 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=(z^pixel)*fn1(z^pixel),
    |z|<=t
  }

Jm_03 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1((fn2(z)*pixel)*fn3(fn4(z)*pixel))*pixel,
    |z|<=t
  }

Jm_03a {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1((fn2(z)*pixel)*fn3(fn4(z)*pixel))+pixel,
    |z|<=t
  }

Jm_04 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1((fn2(z)*pixel)*fn3(fn4(z)*pixel)),
    |z|<=t
  }

Jm_05 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1(fn2((z^pixel))),
    |z|<=t
  }

Jm_06 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1(fn2(fn3((z^z)*pixel))),
    |z|<=t
  }

Jm_07 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1(fn2(fn3((z^z)*pixel)))*pixel,
    |z|<=t
  }

Jm_08 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1(fn2(fn3((z^z)*pixel)))+pixel,
    |z|<=t
  }

Jm_09 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1(fn2(fn3(fn4(z))))+pixel,
    |z|<=t
  }

Jm_10 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1(fn2(fn3(fn4(z)*pixel))),
    |z|<=t
  }

Jm_11 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1(fn2(fn3(fn4(z)*pixel)))*pixel,
    |z|<=t
  }

Jm_11a {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1(fn2(fn3(fn4(z)*pixel)))+pixel,
    |z|<=t
  }

Jm_12 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1(fn2(fn3(z)*pixel)),
    |z|<=t
  }

Jm_13 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1(fn2(fn3(z)*pixel))*pixel,
    |z|<=t
  }

Jm_14 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1(fn2(fn3(z)*pixel))+pixel,
    |z|<=t
  }

Jm_15 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   f2=fn2(z),z=fn1(f2)*fn3(fn4(f2))*pixel,
    |z|<=t
  }

Jm_16 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   f2=fn2(z),z=fn1(f2)*fn3(fn4(f2))+pixel,
    |z|<=t
  }

Jm_17 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1(z)*pixel*fn2(fn3(z)),
    |z|<=t
  }

Jm_18 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1(z)*pixel*fn2(fn3(z)*pixel),
    |z|<=t
  }

Jm_19 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1(z)*pixel*fn2(fn3(z)+pixel),
    |z|<=t
  }

Jm_20 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1(z^pixel),
    |z|<=t
  }

Jm_21 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1(z^pixel)*pixel,
    |z|<=t
  }

Jm_22 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   sq=fn1(z), z=(sq*fn2(sq)+sq)+pixel,
    |z|<=t
  }

Jm_23 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1(fn2(fn3(z)+pixel*pixel)),
    |z|<=t
  }

Jm_24 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z2=fn1(z), z=(fn2(z2*fn3(z2)+z2))+pixel,
    |z|<=t
  }

Jm_25 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1(z*fn2(z)) + pixel,
    |z|<=t
  }

Jm_26 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   z=fn1(fn2(z)) + pixel,
    |z|<=t
  }

Jm_27 {; generalized Jm Richard-Collard type
  z=pixel,t=p1+4:
   sqrz=fn1(z), z=sqrz + 1/sqrz + pixel,
    |z|<=t
  }

Jm_ducks(XAXIS) {; Jm Richard-Collard
  ; Not so ugly at first glance and lot of corners to zoom in.
  ; try this: corners=-1.178372/-0.978384/-0.751678/-0.601683
  z=pixel,tst=p1+4,t=1+pixel:
   z=sqr(z)+t,
    |z|<=tst
  }

Gamma(XAXIS)={ ; first order gamma function from Prof. Jm
  ; "It's pretty long to generate even on a 486-33 comp but there's a lot
  ; of corners to zoom in and zoom and zoom...beautiful pictures :)"
  z=pixel,twopi=6.283185307179586,r=10:
   z=(twopi*z)^(0.5)*(z^z)*exp(-z)+pixel
    |z|<=r
  }

ZZ(XAXIS) { ; Prof Jm using Newton-Raphson method
  ; use floating point with this one
  z=pixel,solution=1:
   z1=z^z;
   z2=(log(z)+1)*z1;
   z=z-(z1-1)/z2 ,
    0.001 <= |solution-z1|
  }

ZZa(XAXIS) { ; Prof Jm using Newton-Raphson method
  ; use floating point with this one
  z=pixel,solution=1:
   z1=z^(z-1);
   z2=(((z-1)/z)+log(z))*z1;
   z=z-((z1-1)/z2) ,
    .001 <= |solution-z1|
  }


comment {
  You should note that for the Transparent 3D fractals the x, y, z, and t
  coordinates correspond to the 2D slices and not the final 3D True Color
  image.  To relate the 2D slices to the 3D image, swap the x- and z-axis,
  i.e. a 90 degree rotation about the y-axis.
			    -Mark Peterson 6-2-91
  }

MandelXAxis(XAXIS) {	; for Transparent3D
  z = zt,		; Define Julia axes as depth/time and the
  c = xy:		;   Mandelbrot axes as width/height for each slice.
			;   This corresponds to Mandelbrot axes as
			;   height/depth and the Julia axes as width
			;   time for the 3D image.
   z = Sqr(z) + c
    LastSqr <= 4;
  }

OldJulibrot(ORIGIN) {		    ; for Transparent3D
  z = real(zt) + flip(imag(xy)),    ; These settings coorespond to the
  c = imag(zt) + flip(real(xy)):    ;	Julia axes as height/width and
				    ;	the Mandelbrot axes as time/depth
				    ;	for the 3D image.
   z = Sqr(z) + c
    LastSqr <= 4;
  }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -