📄 fracsubr.c
字号:
ddelmin = fabs(delxx);
if (fabs(delxx2) > ddelmin)
ddelmin = fabs(delxx2);
if (fabs(delyy) > fabs(delyy2)) {
if (fabs(delyy) < ddelmin)
ddelmin = fabs(delyy);
}
else
if (fabs(delyy2) < ddelmin)
ddelmin = fabs(delyy2);
delmin = fudgetolong(ddelmin);
/* calculate factors which plot real values to screen co-ords */
/* calcfrac.c plot_orbit routines have comments about this */
ftemp = (0.0-delyy2) * delxx2 * dxsize * dysize
- (xxmax-xx3rd) * (yy3rd-yymax);
plotmx1 = delxx2 * dxsize * dysize / ftemp;
plotmx2 = (yy3rd-yymax) * dxsize / ftemp;
plotmy1 = (0.0-delyy2) * dxsize * dysize / ftemp;
plotmy2 = (xxmax-xx3rd) * dysize / ftemp;
}
static long _fastcall fudgetolong(double d)
{
if ((d *= fudge) > 0) d += 0.5;
else d -= 0.5;
return (long)d;
}
static double _fastcall fudgetodouble(long l)
{
char buf[30];
double d;
sprintf(buf,"%.9g",(double)l / fudge);
#ifndef XFRACT
sscanf(buf,"%lg",&d);
#else
sscanf(buf,"%lf",&d);
#endif
return d;
}
void adjust_corner()
{
/* make edges very near vert/horiz exact, to ditch rounding errs and */
/* to avoid problems when delta per axis makes too large a ratio */
double ftemp,ftemp2;
if( (ftemp=fabs(xx3rd-xxmin)) < (ftemp2=fabs(xxmax-xx3rd)) ) {
if (ftemp*10000 < ftemp2 && yy3rd != yymax)
xx3rd = xxmin;
}
else if (ftemp2*10000 < ftemp && yy3rd != yymin)
xx3rd = xxmax;
if( (ftemp=fabs(yy3rd-yymin)) < (ftemp2=fabs(yymax-yy3rd)) ) {
if (ftemp*10000 < ftemp2 && xx3rd != xxmax)
yy3rd = yymin;
}
else if (ftemp2*10000 < ftemp && xx3rd != xxmin)
yy3rd = yymax;
}
static void _fastcall adjust_to_limits(double expand)
{ double cornerx[4],cornery[4];
double lowx,highx,lowy,highy,limit,ftemp;
double centerx,centery,adjx,adjy;
int i;
limit = 32767.99;
if (bitshift >= 24) limit = 31.99;
if (bitshift >= 29) limit = 3.99;
centerx = (xxmin+xxmax)/2;
centery = (yymin+yymax)/2;
if (xxmin == centerx) { /* ohoh, infinitely thin, fix it */
smallest_add(&xxmax);
xxmin -= xxmax-centerx;
}
if (yymin == centery) {
smallest_add(&yymax);
yymin -= yymax-centery;
}
if (xx3rd == centerx)
smallest_add(&xx3rd);
if (yy3rd == centery)
smallest_add(&yy3rd);
/* setup array for easier manipulation */
cornerx[0] = xxmin; cornerx[1] = xxmax;
cornerx[2] = xx3rd; cornerx[3] = xxmin+(xxmax-xx3rd);
cornery[0] = yymax; cornery[1] = yymin;
cornery[2] = yy3rd; cornery[3] = yymin+(yymax-yy3rd);
/* if caller wants image size adjusted, do that first */
if (expand != 1.0)
for (i=0; i<4; ++i) {
cornerx[i] = centerx + (cornerx[i]-centerx)*expand;
cornery[i] = centery + (cornery[i]-centery)*expand;
}
/* get min/max x/y values */
lowx = highx = cornerx[0];
lowy = highy = cornery[0];
for (i=1; i<4; ++i) {
if (cornerx[i] < lowx) lowx = cornerx[i];
if (cornerx[i] > highx) highx = cornerx[i];
if (cornery[i] < lowy) lowy = cornery[i];
if (cornery[i] > highy) highy = cornery[i];
}
/* if image is too large, downsize it maintaining center */
ftemp = highx-lowx;
if (highy-lowy > ftemp) ftemp = highy-lowy;
if ((ftemp = limit*2/ftemp) < 1.0)
for (i=0; i<4; ++i) {
cornerx[i] = centerx + (cornerx[i]-centerx)*ftemp;
cornery[i] = centery + (cornery[i]-centery)*ftemp;
}
/* if any corner has x or y past limit, move the image */
adjx = adjy = 0;
for (i=0; i<4; ++i) {
if (cornerx[i] > limit && (ftemp = cornerx[i] - limit) > adjx)
adjx = ftemp;
if (cornerx[i] < 0.0-limit && (ftemp = cornerx[i] + limit) < adjx)
adjx = ftemp;
if (cornery[i] > limit && (ftemp = cornery[i] - limit) > adjy)
adjy = ftemp;
if (cornery[i] < 0.0-limit && (ftemp = cornery[i] + limit) < adjy)
adjy = ftemp;
}
if (calc_status == 2 && (adjx != 0 || adjy != 0) && (zwidth == 1.0))
calc_status = 0;
xxmin = cornerx[0] - adjx;
xxmax = cornerx[1] - adjx;
xx3rd = cornerx[2] - adjx;
yymax = cornery[0] - adjy;
yymin = cornery[1] - adjy;
yy3rd = cornery[2] - adjy;
adjust_corner(); /* make 3rd corner exact if very near other co-ords */
}
static void _fastcall smallest_add(double *num)
{
*num += *num * 5.0e-16;
}
static int _fastcall ratio_bad(double actual, double desired)
{ double ftemp;
if (desired != 0)
if ((ftemp = actual / desired) < 0.95 || ftemp > 1.05)
return(1);
return(0);
}
/* Save/resume stuff:
Engines which aren't resumable can simply ignore all this.
Before calling the (per_image,calctype) routines (engine), calcfract sets:
"resuming" to 0 if new image, nonzero if resuming a partially done image
"calc_status" to 1
If an engine is interrupted and wants to be able to resume it must:
store whatever status info it needs to be able to resume later
set calc_status to 2 and return
If subsequently called with resuming!=0, the engine must restore status
info and continue from where it left off.
Since the info required for resume can get rather large for some types,
it is not stored directly in save_info. Instead, memory is dynamically
allocated as required, and stored in .fra files as a separate block.
To save info for later resume, an engine routine can use:
alloc_resume(maxsize,version)
Maxsize must be >= max bytes subsequently saved + 2; over-allocation
is harmless except for possibility of insufficient mem available;
undersize is not checked and probably causes serious misbehaviour.
Version is an arbitrary number so that subsequent revisions of the
engine can be made backward compatible.
Alloc_resume sets calc_status to 2 (resumable) if it succeeds; to 3
if it cannot allocate memory (and issues warning to user).
put_resume({bytes,&argument,} ... 0)
Can be called as often as required to store the info.
Arguments must not be far addresses.
Is not protected against calls which use more space than allocated.
To reload info when resuming, use:
start_resume()
initializes and returns version number
get_resume({bytes,&argument,} ... 0)
inverse of store_resume
end_resume()
optional, frees the memory area sooner than would happen otherwise
Example, save info:
alloc_resume(sizeof(parmarray)+100,2);
put_resume(sizeof(int),&row, sizeof(int),&col,
sizeof(parmarray),parmarray, 0);
restore info:
vsn = start_resume();
get_resume(sizeof(int),&row, sizeof(int),&col, 0);
if (vsn >= 2)
get_resume(sizeof(parmarray),parmarray,0);
end_resume();
Engines which allocate a large far memory chunk of their own might
directly set resume_info, resume_len, calc_status to avoid doubling
transient memory needs by using these routines.
StandardFractal, calcmand, solidguess, and bound_trace_main are a related
set of engines for escape-time fractals. They use a common worklist
structure for save/resume. Fractals using these must specify calcmand
or StandardFractal as the engine in fractalspecificinfo.
Other engines don't get btm nor ssg, don't get off-axis symmetry nor
panning (the worklist stuff), and are on their own for save/resume.
*/
#ifndef XFRACT
int put_resume(int len, ...)
#else
int put_resume(va_alist)
va_dcl
#endif
{
va_list arg_marker; /* variable arg list */
char *source_ptr;
#ifdef XFRACT
int len;
#endif
if (resume_info == NULL)
return(-1);
#ifndef XFRACT
va_start(arg_marker,len);
#else
va_start(arg_marker);
len = va_arg(arg_marker,int);
#endif
while (len)
{
source_ptr = va_arg(arg_marker,char *);
far_memcpy(resume_info+resume_len,source_ptr,len);
resume_len += len;
len = va_arg(arg_marker,int);
}
return(0);
}
int alloc_resume(int alloclen, int version)
{
if (resume_info != NULL) /* free the prior area if there is one */
farmemfree(resume_info);
if ((resume_info = farmemalloc((long)alloclen))== NULL)
{
static char msg[] = {"\
Warning - insufficient free memory to save status.\n\
You will not be able to resume calculating this image."};
stopmsg(0,msg);
calc_status = 3;
return(-1);
}
resume_len = 0;
put_resume(sizeof(int),&version,0);
calc_status = 2;
return(0);
}
#ifndef XFRACT
int get_resume(int len, ...)
#else
int get_resume(va_alist)
va_dcl
#endif
{
va_list arg_marker; /* variable arg list */
char *dest_ptr;
#ifdef XFRACT
int len;
#endif
if (resume_info == NULL)
return(-1);
#ifndef XFRACT
va_start(arg_marker,len);
#else
va_start(arg_marker);
len = va_arg(arg_marker,int);
#endif
while (len)
{
dest_ptr = va_arg(arg_marker,char *);
far_memcpy(dest_ptr,resume_info+resume_offset,len);
resume_offset += len;
len = va_arg(arg_marker,int);
}
return(0);
}
int start_resume()
{
int version;
if (resume_info == NULL)
return(-1);
resume_offset = 0;
get_resume(sizeof(int),&version,0);
return(version);
}
void end_resume()
{
if (resume_info != NULL) /* free the prior area if there is one */
{
farmemfree(resume_info);
resume_info = NULL;
}
}
/* Showing orbit requires converting real co-ords to screen co-ords.
Define:
Xs == xxmax-xx3rd Ys == yy3rd-yymax
W == xdots-1 D == ydots-1
We know that:
realx == lx0[col] + lx1[row]
realy == ly0[row] + ly1[col]
lx0[col] == (col/width) * Xs + xxmin
lx1[row] == row * delxx
ly0[row] == (row/D) * Ys + yymax
ly1[col] == col * (0-delyy)
so:
realx == (col/W) * Xs + xxmin + row * delxx
realy == (row/D) * Ys + yymax + col * (0-delyy)
and therefore:
row == (realx-xxmin - (col/W)*Xs) / Xv (1)
col == (realy-yymax - (row/D)*Ys) / Yv (2)
substitute (2) into (1) and solve for row:
row == ((realx-xxmin)*(0-delyy2)*W*D - (realy-yymax)*Xs*D)
/ ((0-delyy2)*W*delxx2*D-Ys*Xs)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -