📄 boxandwhiskercalculator.java
字号:
/* ======================================
* JFreeChart : a free Java chart library
* ======================================
*
* Project Info: http://www.jfree.org/jfreechart/index.html
* Project Lead: David Gilbert (david.gilbert@object-refinery.com);
*
* (C) Copyright 2000-2003, by Object Refinery Limited and Contributors.
*
* This library is free software; you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Foundation;
* either version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
* See the GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License along with this
* library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
* Boston, MA 02111-1307, USA.
*
* ----------------------------
* BoxAndWhiskerCalculator.java
* ----------------------------
* (C) Copyright 2003 by Object Refinery Limited and Contributors.
*
* Original Author: David Gilbert (for Object Refinery Limited);
* Contributor(s): -;
*
* $Id: BoxAndWhiskerCalculator.java,v 1.2 2003/09/03 15:08:51 mungady Exp $
*
* Changes
* -------
* 28-Aug-2003 : Version 1 (DG);
*
*/
package org.jfree.data.statistics;
import java.util.ArrayList;
import java.util.Collections;
import java.util.Iterator;
import java.util.List;
/**
* A utility class that calculates the mean, median, quartiles Q1 and Q3, plus a list of outlier
* values...all from an arbitrary list of Number objects.
*/
public class BoxAndWhiskerCalculator {
/**
* Calculates the statistics required for a {@link BoxAndWhiskerItem}.
*
* @param values A list of numbers.
*
* @return Box-and-whisker statistics.
*/
public static BoxAndWhiskerItem calculateBoxAndWhiskerStatistics(List values) {
Collections.sort(values);
double mean = calculateMean(values);
double median = calculateMedian(values);
double q1 = calculateQ1(values);
double q3 = calculateQ3(values);
double interQuartileRange = q3 - q1;
double upperOutlierThreshold = q1 + (interQuartileRange * 1.5);
double lowerOutlierThreshold = q3 - (interQuartileRange * 1.5);
double upperFaroutThreshold = q1 + (interQuartileRange * 2.0);
double lowerFaroutThreshold = q3 - (interQuartileRange * 2.0);
double minRegularValue = Double.POSITIVE_INFINITY;
double maxRegularValue = Double.NEGATIVE_INFINITY;
double minOutlier = Double.POSITIVE_INFINITY;
double maxOutlier = Double.NEGATIVE_INFINITY;
List outliers = new ArrayList();
Iterator iterator = values.iterator();
while (iterator.hasNext()) {
Object object = iterator.next();
if (object != null && object instanceof Number) {
Number number = (Number) object;
double value = number.doubleValue();
if (value > upperOutlierThreshold) {
outliers.add(number);
if (value > maxOutlier && value <= upperFaroutThreshold) {
maxOutlier = value;
}
}
else if (value < lowerOutlierThreshold) {
outliers.add(number);
if (value < minOutlier && value >= lowerFaroutThreshold) {
minOutlier = value;
}
}
else {
if (minRegularValue == Double.NaN) {
minRegularValue = value;
}
else {
minRegularValue = Math.min(minRegularValue, value);
}
if (maxRegularValue == Double.NaN) {
maxRegularValue = value;
}
else {
maxRegularValue = Math.max(maxRegularValue, value);
}
}
}
}
minOutlier = Math.min(minOutlier, minRegularValue);
maxOutlier = Math.max(maxOutlier, maxRegularValue);
return new BoxAndWhiskerItem(
new Double(mean),
new Double(median),
new Double(q1),
new Double(q3),
new Double(minRegularValue),
new Double(maxRegularValue),
new Double(minOutlier),
new Double(maxOutlier),
outliers
);
}
/**
* Returns the mean of a list of numbers.
*
* @param values a list of numbers.
*
* @return The mean.
*/
public static double calculateMean(List values) {
double result = Double.NaN;
int count = 0;
double total = 0.0;
Iterator iterator = values.iterator();
while (iterator.hasNext()) {
Object object = iterator.next();
if (object != null && object instanceof Number) {
Number number = (Number) object;
total = total + number.doubleValue();
count = count + 1;
}
}
if (count > 0) {
result = total / count;
}
return result;
}
/**
* Calculates the median for a list of values (Number objects) that are in ascending order.
*
* @param values the values in ascending order.
*
* @return The median.
*/
public static double calculateMedian(List values) {
return calculateMedian(values, 0, values.size() - 1);
}
/**
* Calculates the median for a sublist within a list of values (Number objects) that are in
* ascending order.
*
* @param values the values in ascending order.
* @param start the start index.
* @param end the end index.
*
* @return The median.
*/
public static double calculateMedian(List values, int start, int end) {
double result = Double.NaN;
int count = end - start + 1;
if (count > 0) {
if (count % 2 == 1) {
if (count > 1) {
Number value = (Number) values.get(start + count / 2 + 1);
result = value.doubleValue();
}
else {
Number value = (Number) values.get(start);
result = value.doubleValue();
}
}
else {
Number value1 = (Number) values.get(start + count / 2 - 1);
Number value2 = (Number) values.get(start + count / 2);
result = (value1.doubleValue() + value2.doubleValue()) / 2.0;
}
}
return result;
}
/**
* Calculates the first quartile for a list of numbers in ascending order.
*
* @param values the numbers in ascending order.
*
* @return The first quartile.
*/
public static double calculateQ1(List values) {
double result = Double.NaN;
int count = values.size();
if (count > 0) {
if (count % 2 == 1) {
if (count > 1) {
result = calculateMedian(values, 0, count / 2);
}
else {
result = calculateMedian(values, 0, 0);
}
}
else {
result = calculateMedian(values, 0, count / 2);
}
}
return result;
}
/**
* Calculates the third quartile for a list of numbers in ascending order.
*
* @param values the list of values.
*
* @return The third quartile.
*/
public static double calculateQ3(List values) {
double result = Double.NaN;
int count = values.size();
if (count > 0) {
if (count % 2 == 1) {
if (count > 1) {
result = calculateMedian(values, count / 2 + 1, count - 1);
}
else {
result = calculateMedian(values, 0, 0);
}
}
else {
result = calculateMedian(values, count / 2 + 1, count - 1);
}
}
return result;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -