⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 binom.html

📁 Data Structure Ebook
💻 HTML
字号:
<HTML><HEAD>
<TITLE>Data Structures and Algorithms: Binomial Coefficients</TITLE>

<META name="description" content="Data Structures and Algorithms Course Notes,
PLDS210 University of Western Australia">
<META name="keywords" content="data structures,algorithms,abstract data types,
dynamic algorithms, binomial coefficients">
</HEAD>
<BODY BGCOLOR="#ffffff">
<TABLE BGCOLOR="#00c0f0" WIDTH="100%" CELLSPACING=0 CELLPADDING=0>
<TR BGCOLOR="#00f0f0"><TD ALIGN=right>
<FONT FACE=helvetica SIZE=+1><I>Data Structures and Algorithms</I></FONT>
</TD></TR>

<TR><TD><FONT FACE=helvetica SIZE=+2><B>9.2 Binomial Coefficients</B></FONT>
</TD></TR>
</TABLE>
<P>
As with the Fibonacci numbers,
the binomial coefficients can be calculated recursively -
making use of the relation:
<CENTER>
<SUP>n</SUP>C<SUB>m</SUB> = <SUP>n-1</SUP>C<SUB>m-1</SUB> +
                            <SUP>n-1</SUP>C<SUB>m</SUB>
</CENTER>
A similar analysis to that used for the Fibonacci numbers
shows that the time complexity using this approach is
also the binomial coefficient itself.
<P>
However, we all know that if we construct Pascal's triangle,
the <B><I>n<SUP>th</SUP></I></B> row gives all the values,<BR>
<SUP>n</SUP>C<SUB>m</SUB>, m = 0,n:
<CENTER>
<TABLE>
<TR><TD><PRE>
              1
            1   1
          1   2   1
        1   3   3   1
      1   4   6   4   1
    1   5  10  10   5   1
  1   6  15  20  15   6   1
1   7  21  35  35  21   7   1
</PRE>
</TD></TR>
</TABLE>
</CENTER>
Each entry takes
<B><I>O(</I>1<I>)</I></B>
time to calculate
and there are 
<B><I>O(n</I><SUP>2</SUP><I>)</I></B> of them.
So this calculation of the coefficients takes
<B><I>O(n</I><SUP>2</SUP><I>)</I></B> 
time.
But it uses
<B><I>O(n</I><SUP>2</SUP><I>)</I></B> 
space to store the coefficients.


<P>

<TABLE CELLPADDING=5 WIDTH="100%" BGCOLOR="#00f0f0" CELLSPACING=4>
<TR><TD WIDTH=50%>
<FONT FACE=arial,helvetica>Continue on to <A HREF="opt_bin.html" tppabs="http://www.ee.uwa.edu.au/~plsd210/ds/opt_bin.html">Optimal Binary Search Trees</A></TD>
<TD><FONT FACE=arial,helvetica>Back to the <A HREF="ds_ToC.html" tppabs="http://www.ee.uwa.edu.au/~plsd210/ds/ds_ToC.html">Table of Contents</A>
</TD></TR></TABLE>
<SMALL>
&copy; <A HREF=mailto:morris@ee.uwa.edu.au>John Morris</A>, 1998
</SMALL>
</BODY>
</HTML>


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -