⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fft.ps

📁 Data Structure Ebook
💻 PS
📖 第 1 页 / 共 4 页
字号:
1730 y Fn(In)13 b(section)i(12,)e(w)o(e)h(used)g(the)hFg(c)n(o)n(e\016cient)f(form)f Fn(to)h(represen)o(t)i(the)e(p)q(olynomials.)h(There)262 1780 y(is)f(an)h(alternativ)o(e)g(w)o(a)o(y)f(to)h(represen)o(t)j(p)q(olynomial)o(s,)13 b(using)h(the)iFg(p)n(oint-value)g(r)n(epr)n(esen-)262 1830 y(tation)pFn(.)h(A)c(p)q(olynomial)d(of)i(degree)i Fm(n)8 b Ff(\000)fFn(1)13 b(can)g(b)q(e)g(represen)o(ted)j(b)o(y)d Fm(n)fFn(p)q(oin)o(t-v)n(alue)g(pairs:)657 1929 y Ff(f)p Fn(\()pFm(x)718 1935 y Fj(0)736 1929 y Fm(;)7 b(y)775 1935 yFj(0)794 1929 y Fn(\))p Fm(;)g Fn(\()p Fm(x)869 1935y Fj(1)887 1929 y Fm(;)g(y)926 1935 y Fj(1)944 1929 yFn(\))p Fm(;)g(:)g(:)g(:)e(;)i Fn(\()p Fm(x)1093 1935y Fl(n)p Fk(\000)p Fj(1)1157 1929 y Fm(;)g(y)1196 1935y Fl(n)p Fk(\000)p Fj(1)1261 1929 y Fn(\))p Ff(g)2622021 y Fn(where)324 2104 y Ff(\017)20 b Fn(All)13 b(the)iFm(x)529 2110 y Fl(k)563 2104 y Fn(are)f(distinct)3242187 y Ff(\017)20 b Fm(y)385 2193 y Fl(k)418 2187 y Fn(=)11b Fm(A)p Fn(\()p Fm(x)532 2193 y Fl(k)553 2187 y Fn(\))2622303 y Fh(12.2)55 b(Uniqueness)18 b(Theorem)262 2380y Fn(F)m(or)13 b(an)o(y)g(set)i(of)e Fm(n)h Fn(p)q(oin)o(ts,)g(there)h(is)e(a)h(unique)g(p)q(olynomial.)262 2429 y(\(F)m(or)f(a)h(pro)q(of,)fFg(se)n(e)h Fn(Cormen)f Fg(et)h(al.)p Fn(\).)967 2574y(1)p eop%%Page: 2 22 1 bop 262 307 a Fh(12.3)55 b(Op)r(erations)18 b(in)g(the)h(P)n(oin)n(t-V)-5 b(alue)19 b(Represen)n(tation)262 384 y Fn(If)13b(w)o(e)h(ha)o(v)o(e)g(t)o(w)o(o)f(p)q(olynomials,)eFm(A)j Fn(and)f Fm(B)r Fn(:)586 471 y Fm(A)p Fn(\()pFm(x)p Fn(\))e(=)h Ff(f)p Fn(\()p Fm(x)789 477 y Fj(0)807471 y Fm(;)7 b(y)846 477 y Fj(0)865 471 y Fn(\))p Fm(;)gFn(\()p Fm(x)940 477 y Fj(1)958 471 y Fm(;)g(y)997 477y Fj(1)1015 471 y Fn(\))p Fm(;)g(:)g(:)g(:)e(;)i Fn(\()pFm(x)1164 477 y Fl(n)p Fk(\000)p Fj(1)1229 471 y Fm(;)g(y)1268477 y Fl(n)p Fk(\000)p Fj(1)1333 471 y Fn(\))p Ff(g)262550 y Fn(and)584 600 y Fm(B)r Fn(\()p Fm(x)p Fn(\))13b(=)e Ff(f)p Fn(\()p Fm(x)790 606 y Fj(0)809 600 y Fm(;)c(y)849583 y Fk(0)848 610 y Fj(0)866 600 y Fn(\))p Fm(;)g Fn(\()pFm(x)941 606 y Fj(1)959 600 y Fm(;)g(y)999 583 y Fk(0)998610 y Fj(1)1017 600 y Fn(\))p Fm(;)g(:)g(:)g(:)e(;)iFn(\()p Fm(x)1166 606 y Fl(n)p Fk(\000)p Fj(1)1230 600y Fm(;)g(y)1270 583 y Fk(0)1269 610 y Fl(n)p Fk(\000)pFj(1)1334 600 y Fn(\))p Ff(g)262 667 y Fn(where)15 b(all)d(the)jFm(x)535 673 y Fl(k)569 667 y Fn(are)f(the)g(same,)f(then)286754 y Fm(C)s Fn(\()p Fm(x)p Fn(\))e(=)h Fm(A)p Fn(\()pFm(x)p Fn(\))d(+)h Fm(B)r Fn(\()p Fm(x)p Fn(\))i(=)gFf(f)p Fn(\()p Fm(x)774 760 y Fj(0)792 754 y Fm(;)7 b(y)831760 y Fj(0)858 754 y Fn(+)j Fm(y)921 737 y Fk(0)920 764y Fj(0)939 754 y Fn(\))p Fm(;)d Fn(\()p Fm(x)1014 760y Fj(1)1032 754 y Fm(;)g(y)1071 760 y Fj(1)1099 754 yFn(+)i Fm(y)1161 737 y Fk(0)1160 764 y Fj(1)1179 754y Fn(\))p Fm(;)e(:)g(:)g(:)e(;)i Fn(\()p Fm(x)1328 760y Fl(n)p Fk(\000)p Fj(1)1392 754 y Fm(;)g(y)1431 760y Fl(n)p Fk(\000)p Fj(1)1506 754 y Fn(+)i Fm(y)1568 737y Fk(0)1567 764 y Fl(n)p Fk(\000)p Fj(1)1633 754 y Fn(\))pFf(g)262 833 y Fn(and)387 912 y Fm(C)s Fn(\()p Fm(x)pFn(\))i(=)h Fm(A)p Fn(\()p Fm(x)p Fn(\))633 902 y(_)618912 y Fm(B)s Fn(\()p Fm(x)p Fn(\))f(=)h Ff(f)p Fn(\()pFm(x)824 918 y Fj(0)843 912 y Fm(;)7 b(y)882 918 y Fj(0)900912 y Fm(y)921 895 y Fk(0)920 922 y Fj(0)939 912 y Fn(\))pFm(;)g Fn(\()p Fm(x)1014 918 y Fj(1)1032 912 y Fm(;)g(y)1071918 y Fj(1)1089 912 y Fm(y)1110 895 y Fk(0)1109 922 yFj(1)1128 912 y Fn(\))p Fm(;)g(:)g(:)g(:)e(;)i Fn(\()pFm(x)1277 918 y Fl(n)p Fk(\000)p Fj(1)1342 912 y Fm(;)g(y)1381918 y Fl(n)p Fk(\000)p Fj(1)1446 912 y Fm(y)1467 895y Fk(0)1466 922 y Fl(n)p Fk(\000)p Fj(1)1531 912 y Fn(\))pFf(g)262 991 y Fn(giving)i(a)i(\002\()p Fm(n)p Fn(\))h(pro)q(cedure)h(for)e(m)o(ultiplyi)o(ng)d(t)o(w)o(o)j(p)q(olynomials.)j(But)e(note)f(that)h(w)o(e)f(no)o(w)262 1041 y(need)j(2)p Fm(n)g Fn(p)q(oin)o(ts)g(in)f(our)h(represen)o(tations)i(of)d Fm(A)h Fn(and)gFm(B)r Fn(.)262 1091 y(Unfortunately)m(,)k(con)o(v)o(ersion)h(b)q(et)o(w)o(een)h(co)q(e\016cien)o(t)f(and)f(p)q(oin)o(t-v)n(alue)g(represen)o(tations)262 1141 y(requires)d(generating)f Fm(n)g Fn(or)g(2)pFm(n)g Fn(p)q(oin)o(ts.)k(Ev)n(aluating)13 b Fm(y)11421147 y Fl(k)1175 1141 y Fn(=)f Fm(A)p Fn(\()p Fm(x)12901147 y Fl(k)1310 1141 y Fn(\))i(requires)i(\002\()p Fm(n)pFn(\))e(op)q(er-)262 1190 y(ations)f(using)h(Horner's)g(rule,)g(so)g(the)g(con)o(v)o(ersion)h(is)e(\002\()p Fm(n)1194 1175y Fj(2)1213 1190 y Fn(\)!)262 1240 y(Ho)o(w)o(ev)o(er,)k(note)h(that)f(w)o(e)h(can)f(c)o(ho)q(ose)h(an)o(y)e Fm(x)1017 1246y Fl(k)1055 1240 y Fn(as)h(long)f(as)h(they)h(are)g(distinct.)28b(If)16 b(w)o(e)262 1290 y(c)o(ho)q(ose)k(the)g Fm(n)gFg(c)n(omplex)g Fm(n)708 1275 y Fl(th)762 1290 y Fg(r)n(o)n(ots)f(of)h(unity)p Fn(,)h(then)f(w)o(e)f(are)h(p)q(erforming)e(a)h(Discrete)2621340 y(F)m(ourier)e(T)m(ransform.)26 b(As)18 b(w)o(e)f(will)f(sho)o(w,)i(this)f(tak)o(es)h(\002\()p Fm(n)7 b Fn(log)g Fm(n)pFn(\))17 b(time.)27 b(The)18 b(rev)o(erse)262 1390 y(transformation)c(\(from)g(p)q(oin)o(t-v)n(alue)h(to)h(co)q(e\016cien)o(t)h(represen)o(tation\),)h(called)e Fg(interp)n(o-)262 1439 y(lation)pFn(,)d(is)h(also)f(a)g(F)m(ourier)h(T)m(ransform,)e(also)h(requiring)h(\002\()p Fm(n)7 b Fn(log)f Fm(n)p Fn(\))14 b(time.)2621489 y(This)f(leads)h(us)h(to)e(the)i(follo)o(wing)c(p)q(olynomial)g(m)o(ultipli)o(cation)g(algorithm:)p 262 1503 1345 2 v 2611603 2 100 v 286 1538 a(Augmen)o(t)h(p)q(olynomials)eFm(A)j Fn(and)g Fm(B)i Fn(b)o(y)e(adding)f Fm(n)h Fn(higher)g(order)h(0)286 1588 y(co)q(e\016cien)o(ts)p 1373 1603 V 14451538 a(\002\()p Fm(n)p Fn(\))p 1605 1603 V 262 1604 13452 v 261 1804 2 200 v 286 1639 a Fg(Evaluate)286 1689y Fn(Compute)i(p)q(oin)o(t-v)n(alue)g(represen)o(tation)i(of)eFm(A)p Fn(\()p Fm(x)p Fn(\))h(and)f Fm(B)r Fn(\()p Fm(x)pFn(\))i(b)o(y)286 1739 y(t)o(w)o(o)c(applications)f(of)g(the)h(FFT)2861789 y Ff(\))g Fn(v)n(alues)f(at)h(eac)o(h)h(\(2)p Fm(n)pFn(\))688 1774 y Fl(th)735 1789 y Fn(ro)q(ot)f(of)g(unit)o(y)m(.)p1373 1804 V 1399 1639 a(\002\()p Fm(n)7 b Fn(log)g Fm(n)pFn(\))p 1605 1804 V 262 1805 1345 2 v 261 1855 2 50 v286 1840 a(P)o(oin)o(t-wise)14 b(m)o(ultiply)p 1373 1855V 802 w(\002\()p Fm(n)p Fn(\))p 1605 1855 V 262 18571345 2 v 261 1956 2 100 v 286 1892 a Fg(Interp)n(olate)2861942 y Fn(Create)h(co)q(e\016cien)o(t)g(represen)o(tation)g(b)o(y)f(application)f(of)g(FFT)p 1373 1956 V 1399 1892 a(\002\()pFm(n)7 b Fn(log)g Fm(n)p Fn(\))p 1605 1956 V 262 19581345 2 v 261 2008 2 50 v 286 1993 a(T)m(otal)p 1373 2008V 1016 w(\002\()p Fm(n)g Fn(log)g Fm(n)p Fn(\))p 16052008 V 262 2010 1345 2 v 262 2104 a Fh(12.4)55 b(Complex)17b(Ro)r(ots)h(of)h(Unit)n(y)262 2181 y Fn(The)14 b(complex)eFm(n)534 2166 y Fl(th)582 2181 y Fn(ro)q(ot)i(of)f(unit)o(y)m(,)gFm(!)q Fn(,)h(is)f(de\014ned)i(b)o(y:)915 2260 y Fm(!)9422243 y Fl(n)976 2260 y Fn(=)d(1)262 2339 y(There)j(are)f(exactly)gFm(n)g Fn(suc)o(h)g(ro)q(ots:)520 2437 y Fm(e)544 2409y Fe(2)p Fd(\031)q(ik)p 544 2414 60 2 v 565 2430 a(n)6222437 y Fn(=)e(cos)733 2409 y(2)p Fm(\031)q(k)p 733 242869 2 v 755 2466 a(n)816 2437 y Fn(+)e Fm(i)d Fn(sin)9422409 y(2)p Fm(\031)q(k)p 942 2428 V 964 2466 a(n)10302437 y(f)t(or)15 b(k)e Fn(=)f(0)p Fm(;)7 b Fn(1)p Fm(;)g(:)g(:)g(:)s(;)g(n)i Ff(\000)g Fn(1)967 2574 y(2)p eop%%Page: 3 33 2 bop 262 307 a Fn(The)14 b Fg(princip)n(al)g Fm(n)544292 y Fl(th)593 307 y Fg(r)n(o)n(ot)g(of)h(unity)f Fn(is)888403 y Fm(!)914 409 y Fl(n)948 403 y Fn(=)e Fm(e)1016375 y Fe(2)p Fd(\031)q(i)p 1017 380 44 2 v 1029 396 a(n)262494 y Fn(The)i(other)g(ro)q(ots)h(are)828 544 y Fm(!)855527 y Fj(2)854 554 y Fl(n)876 544 y Fm(;)7 b(!)922 527y Fj(3)921 554 y Fl(n)943 544 y Fm(;)g(:)g(:)g(:)e(;)i(!)1063527 y Fl(n)p Fk(\000)p Fj(1)1062 554 y Fl(n)262 660 yFh(12.5)55 b(Prop)r(erties)17 b(of)i Fc(!)351 806 y Fn(Cancellation)404856 y(lemma)691 736 y(F)m(or)13 b(an)o(y)g Fm(n)f Ff(\025)gFn(0)p Fm(;)7 b(k)k Ff(\025)h Fn(0)p Fm(;)7 b(d)k(>)gFn(0:)960 827 y Fm(!)987 810 y Fl(dk)986 837 y(dn)1037827 y Fn(=)h Fm(!)1108 810 y Fl(k)1107 837 y(n)691 968y Fn(F)m(or)h(an)o(y)g(ev)o(en)i Fm(n)c(>)h Fn(0:)9121066 y Fm(!)944 1031 y Fd(n)p 944 1036 19 2 v 946 1052a Fe(2)938 1071 y Fl(n)981 1066 y Fn(=)g Fm(!)1051 1072y Fj(2)1081 1066 y Fn(=)g Ff(\000)p Fn(1)393 1278 y(Halving)4041328 y(lemma)691 1208 y(If)j Fm(n)g Fn(is)h(ev)o(en,)g(the)h(squares)g(of)e(the)h Fm(n)g Fn(com-)691 1257 y(plex)f Fm(n)8061242 y Fl(th)856 1257 y Fn(ro)q(ots)g(of)g(unit)o(y)g(are)h(the)12711241 y Fl(n)p 1271 1248 21 2 v 1273 1272 a Fj(2)13121257 y Fn(com-)691 1307 y(plex)d(\()800 1291 y Fl(n)p800 1298 V 802 1322 a Fj(2)826 1307 y Fn(\))842 1292y Fl(th)890 1307 y Fn(ro)q(ots.)262 1489 y Fh(12.6)55b(The)19 b(F)-5 b(ast)19 b(F)-5 b(ourier)18 b(T)-5 b(ransform)2621566 y Fn(T)m(o)13 b(ev)n(aluate)g Fm(A)p Fn(\()p Fm(x)pFn(\),)h(w)o(e)g(divide)f(it)h(in)o(to)f(t)o(w)o(o)g(parts:)5591657 y Fm(A)590 1640 y Fl(ev)q(en)662 1657 y Fn(\()pFm(x)p Fn(\))f(=)f Fm(a)795 1663 y Fj(0)823 1657 y Fn(+)fFm(a)887 1663 y Fj(2)905 1657 y Fm(x)f Fn(+)h Fm(a)10021663 y Fj(4)1020 1657 y Fm(x)1044 1640 y Fj(2)1072 1657y Fn(+)f Fm(:)e(:)g(:)h Fn(+)h Fm(a)1234 1663 y Fl(n)pFk(\000)p Fj(2)1300 1657 y Fm(x)1329 1629 y Fd(n)p 13281634 19 2 v 1330 1650 a Fe(2)1351 1640 y Fk(\000)p Fj(1)2621749 y Fn(and)568 1798 y Fm(A)599 1781 y Fl(odd)653 1798y Fn(\()p Fm(x)p Fn(\))i(=)h Fm(a)786 1804 y Fj(1)8141798 y Fn(+)d Fm(a)877 1804 y Fj(3)896 1798 y Fm(x)gFn(+)g Fm(a)992 1804 y Fj(5)1011 1798 y Fm(x)1035 1781y Fj(2)1062 1798 y Fn(+)h Fm(:)d(:)g(:)h Fn(+)h Fm(a)12251804 y Fl(n)p Fk(\000)p Fj(1)1290 1798 y Fm(x)1319 1770y Fd(n)p 1319 1775 V 1321 1791 a Fe(2)1342 1781 y Fk(\000)pFj(1)262 1873 y Fn(no)o(w)701 1923 y Fm(A)p Fn(\()p Fm(x)pFn(\))j(=)f Fm(A)874 1906 y Fl(ev)q(en)946 1923 y Fn(\()pFm(x)986 1906 y Fj(2)1005 1923 y Fn(\))e(+)h Fm(A)11031906 y Fl(odd)1156 1923 y Fn(\()p Fm(x)1196 1906 y Fj(2)12141923 y Fn(\))p Fm(x)262 1998 y Fn(So)j(ev)n(aluating)gFm(A)p Fn(\()p Fm(x)p Fn(\))h(at)794 2048 y Fm(!)8212030 y Fj(0)820 2058 y Fl(n)843 2048 y Fm(;)7 b(!)8892030 y Fj(1)888 2058 y Fl(n)909 2048 y Fm(;)g(!)955 2030y Fj(2)954 2058 y Fl(n)976 2048 y Fm(;)g(:)g(:)g(:)e(;)i(!)10962030 y Fl(n)p Fk(\000)p Fj(1)1095 2058 y Fl(n)262 2122y Fn(reduces)15 b(to)312 2205 y(1.)20 b(Ev)n(aluating)13b Fm(A)606 2190 y Fl(ev)q(en)677 2205 y Fn(\()p Fm(x)pFn(\))h(and)g Fm(A)859 2190 y Fl(odd)912 2205 y Fn(\()pFm(x)p Fn(\))g(at)744 2297 y(\()p Fm(!)787 2279 y Fj(0)7862307 y Fl(n)809 2297 y Fn(\))825 2279 y Fj(2)844 2297y Fm(;)7 b Fn(\()p Fm(!)906 2279 y Fj(1)905 2307 y Fl(n)9272297 y Fn(\))943 2279 y Fj(2)961 2297 y Fm(;)g Fn(\()pFm(!)1023 2279 y Fj(2)1022 2307 y Fl(n)1044 2297 y Fn(\))10602279 y Fj(2)1079 2297 y Fm(;)g(:)g(:)g(:)e(;)i Fn(\()pFm(!)1215 2279 y Fl(n)p Fk(\000)p Fj(1)1214 2307 y Fl(n)12802297 y Fn(\))1296 2279 y Fj(2)365 2388 y Fg(but)18 bFn(these)h(are)f(the)h(complex)d(\()884 2372 y Fl(n)p884 2379 21 2 v 886 2402 a Fj(2)910 2388 y Fn(\))9262373 y Fl(th)977 2388 y Fn(ro)q(ots)i(of)f(unit)o(y)h(and)f(there)i(are)f(only)1617 2372 y Fl(n)p 1617 2379 V 1619 2402a Fj(2)1660 2388 y Fn(of)365 2438 y(them.)967 2574 y(3)peop%%Page: 4 44 3 bop 312 307 a Fn(2.)20 b(Com)o(bining)11 b(them.)262387 y(So)k(w)o(e)h(ha)o(v)o(e)f(divided)g(our)h(\002\()pFm(n)778 372 y Fj(2)797 387 y Fn(\))f(ev)n(aluation)g(in)o(to)f(t)o(w)o(o)h(sub-problems)g(of)g(size)1586 371 y Fl(n)p 1586378 21 2 v 1588 401 a Fj(2)1611 387 y Fn(.)23 b(As)262437 y(usual,)c(w)o(e)g(can)g(divide)f(the)i(problem)d(log)7b Fm(n)19 b Fn(times,)f(giving)g(a)g(\002\()p Fm(n)7b Fn(log)g Fm(n)p Fn(\))19 b(ev)n(aluation)262 487 y(algorithm.)262536 y(Th)o(us)9 b(the)h(time)e(complexit)o(y)f(of)i(FFT)g(is)g(\002\()pFm(n)e Fn(log)g Fm(n)p Fn(\))j(and)f(w)o(e)g(ha)o(v)o(e)g(dev)o(elop)q(ed)h(a)f(\002\()p Fm(n)e Fn(log)g Fm(n)p Fn(\))262 586y(algorithm)k(for)i(m)o(ultiplying)e(p)q(olynomial)o(s.)262702 y Fh(12.7)55 b(Recursiv)n(e)17 b(FFT)262 778 y Fn(A)c(recursiv)o(e)j(FFT)e(algorithm)d(has)j(the)h(follo)o(wing)c(form:)724863 y Fm(f)t(f)t(t)p Fn(\()p Fm(a;)c(n)p Fn(\))765 912y Fm(if)19 b(n)12 b Fn(=)g(1)h Fm(then)h(r)q(etur)q(n)g(a)pFn(;)765 967 y Fm(!)791 973 y Fl(n)825 967 y Fn(=)e Fm(e)893941 y Fe(2)p Fd(\031)q(i)p 893 946 44 2 v 906 962 a(n)7651017 y Fm(!)h Fn(=)f(1)765 1067 y Fm(a)787 1052 y Fl(e)8171067 y Fn(=)g(\()p Fm(a)899 1073 y Fj(0)917 1067 y Fm(;)7b(a)958 1073 y Fj(2)976 1067 y Fm(;)g(a)1017 1073 y Fj(4)10351067 y Fm(;)g(:)g(:)g(:)e(;)i(a)1150 1073 y Fl(n)p Fk(\000)pFj(2)1215 1067 y Fn(\))765 1117 y Fm(a)787 1102 y Fl(o)8171117 y Fn(=)12 b(\()p Fm(a)899 1123 y Fj(1)918 1117 yFm(;)7 b(a)959 1123 y Fj(3)977 1117 y Fm(;)g(a)1018 1123y Fj(5)1036 1117 y Fm(;)g(:)g(:)g(:)e(;)i(a)1151 1123y Fl(n)p Fk(\000)p Fj(1)1215 1117 y Fn(\))765 1167 yFm(y)786 1152 y Fl(e)817 1167 y Fn(=)k Fm(f)t(f)t(t)pFn(\()p Fm(a)961 1152 y Fl(e)981 1167 y Fm(;)1004 1150y Fl(n)p 1004 1157 21 2 v 1006 1181 a Fj(2)1030 1167y Fn(\))765 1217 y Fm(y)786 1201 y Fl(o)817 1217 y Fn(=)hFm(f)t(f)t(t)p Fn(\()p Fm(a)962 1201 y Fl(o)982 1217y Fm(;)1006 1200 y Fl(n)p 1006 1207 V 1008 1231 a Fj(2)10311217 y Fn(\))765 1266 y Fm(f)t(or)k(k)c Fn(=)g(0)i Fm(to)10111250 y Fl(n)p 1011 1257 V 1013 1281 a Fj(2)1046 1266y Ff(\000)9 b Fn(1)807 1316 y Fm(y)827 1322 y Fl(k)8591316 y Fn(=)j Fm(y)924 1301 y Fl(e)923 1328 y(k)953 1316y Fn(+)e Fm(!)q(y)1043 1301 y Fl(o)1042 1328 y(k)8071366 y Fm(y)827 1372 y Fl(k)q Fj(+)876 1361 y Fd(n)p876 1366 19 2 v 878 1382 a Fe(2)913 1366 y Fn(=)i Fm(y)9781351 y Fl(e)977 1378 y(k)1007 1366 y Ff(\000)d Fm(!)q(y)10961351 y Fl(o)1095 1378 y(k)807 1417 y Fm(!)k Fn(=)f Fm(!)q(!)9431423 y Fl(n)765 1467 y Fm(r)q(etur)q(n)i(y)262 1578 y

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -