⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 abstracttimebasedmodel.java

📁 搞算法预测的可以来看。有移动平均法
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
        /**     * A helper method that calculates a complete set of forecast values     * derived from the given DataSet. These are calculated in advance due     * to the way in which forecast values are so dependent on the original     * data set. The resulting forecast values are stored in the private     * DataSet forecastValues. Additionally, this method initializes the     * private member variables minTimeValue and maxTimeValue.     * @param dataSet the set of data points on which to base the forecast.     * @return a data set containing all "possible" forecast DataPoints     * that can reasonably be supported by this forecasting model. "Possible"     * forecast DataPoints generally are those which are even partially     * based on an observed value, since forecasting purely off of forecast     * values tends to be unreliable at best.     */    private double initForecastValue( double timeValue )        throws IllegalArgumentException    {        // Temporary store for current forecast value        double forecast = forecast(timeValue);        // Create new forecast data point        DataPoint dpForecast = new Observation( forecast );        dpForecast.setIndependentValue( timeVariable, timeValue );                // Add new data point to forecast set        forecastValues.add( dpForecast );                // Update maximum time value, if necessary        if ( timeValue > maxTimeValue )            maxTimeValue = timeValue;                return forecast;    }        /**     * Using the current model parameters (initialized in init), apply the     * forecast model to the given data point. The data point must have a valid     * value for the independent variable. Upon return, the value of the     * dependent variable will be updated with the forecast value computed for     * that data point.     * @param dataPoint the data point for which a forecast value (for the     *        dependent variable) is required.     * @return the same data point passed in but with the dependent value     *         updated to contain the new forecast value.     * @throws ModelNotInitializedException if forecast is called before the     *         model has been initialized with a call to init.     * @throws IllegalArgumentException if the forecast period specified by     *         the dataPoint is invalid with respect to the historical data     *         provided.     */    public double forecast( DataPoint dataPoint )        throws IllegalArgumentException    {        if ( !initialized )            throw new ModelNotInitializedException();                // Get value of independent variable (the time variable)        double t = dataPoint.getIndependentValue( timeVariable );                return getForecastValue( t );    }        /**     * Returns the forecast value of the dependent variable for the given     * value of the independent time variable. Subclasses must implement     * this method in such a manner consistent with the forecasting model     * they implement. Subclasses can make use of the getForecastValue and     * getObservedValue methods to obtain "earlier" forecasts and     * observations respectively.     * @param timeValue the value of the time variable for which a forecast     * value is required.     * @return the forecast value of the dependent variable for the given     * time.     * @throws IllegalArgumentException if there is insufficient historical     * data - observations passed to init - to generate a forecast for the     * given time value.     */    protected abstract double forecast( double timeValue )        throws IllegalArgumentException;        /**     * Returns the forecast value for the dependent variable for the given     * value of the independent time variable. This method is only intended     * for use by models that base future forecasts, in part, on past     * forecasts.     * @param timeValue the value of the independent time variable for which     * the forecast value is required. This value must be greater than the     * minimum time value defined by the observations passed into the init     * method.     * @return the forecast value of the dependent variable for the given     * value of the independent time variable.     * @throws IllegalArgumentException if the given value of the time     * variable was not a valid value for forecasts.     */    protected double getForecastValue( double timeValue )        throws IllegalArgumentException    {        if ( timeValue>=minTimeValue-TOLERANCE             && timeValue<=maxTimeValue+TOLERANCE )            {                // Find required forecast value in set of                //  pre-computed forecasts                Iterator it = forecastValues.iterator();                while ( it.hasNext() )                    {                        DataPoint dp = (DataPoint)it.next();                        double currentTime                            = dp.getIndependentValue( timeVariable );                                                // If required data point found,                        //  return pre-computed forecast                        if ( Math.abs(currentTime-timeValue) < TOLERANCE )                            return dp.getDependentValue();                    }            }        try            {                return initForecastValue( timeValue );            }        catch ( IllegalArgumentException idex )            {                throw new IllegalArgumentException(                      "Time value (" + timeValue                      + ") invalid for Time Based forecasting model. Valid values are in the range "                      + minTimeValue + "-" + maxTimeValue                      + " in increments of " + timeDiff + "." );            }    }        /**     * Returns the observed value of the dependent variable for the given     * value of the independent time variable.     * @param timeValue the value of the independent time variable for which     * the observed value is required.     * @return the observed value of the dependent variable for the given     * value of the independent time variable.     * @throws IllegalArgumentException if the given value of the time     * variable was not found in the observations originally passed to init.     */    protected double getObservedValue( double timeValue )        throws IllegalArgumentException    {        // Find required forecast value in set of        //  pre-computed forecasts        Iterator it = observedValues.iterator();        while ( it.hasNext() )            {                DataPoint dp = (DataPoint)it.next();                double currentTime                    = dp.getIndependentValue( timeVariable );                                // If required data point found,                //  return pre-computed forecast                if ( Math.abs(currentTime-timeValue) < TOLERANCE )                    return dp.getDependentValue();            }                throw new            IllegalArgumentException("No observation found for time value, "                                     +timeVariable+"="+timeValue);    }        /**     * Returns the name of the independent variable representing the time     * value used by this model.     * @return the name of the independent variable representing the time     * value.     */    public String getTimeVariable()    {        return timeVariable;    }        /**     * Returns the minimum value of the independent time variable currently     * forecast by this model.     * @return the minimum value of the independent time variable.     */    public double getMinimumTimeValue()    {        return minTimeValue;    }        /**     * Returns the maximum value of the independent time variable currently     * forecast by this model.     * @return the maximum value of the independent time variable.     */    public double getMaximumTimeValue()    {        return maxTimeValue;    }        /**     * Returns the independent variable - or the time variable - used in this     * model.     * @return the independent variable in this model.     */    public String getIndependentVariable()    {        return timeVariable;    }        /**     * Returns the current time interval between observations.     * @return the current time interval between observations.     */    protected double getTimeInterval()    {        return timeDiff;    }        /**     * Returns a one or two word name of this type of forecasting model. Keep     * this short. A longer description should be implemented in the toString     * method.     * @return a string representation of the type of forecasting model     *         implemented.     */    public String getForecastType()    {        return "Time Based Model";    }        /**     * This should be overridden to provide a textual description of the     * current forecasting model including, where possible, any derived     * parameters used.     * @return a string representation of the current forecast model, and its     *         parameters.     */    public String toString()    {        return "time based model, spanning " + getNumberOfPeriods()            + " periods and using a time variable of "            + timeVariable+".";    }}// Local Variables:// tab-width: 4// End:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -