⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tripleexponentialsmoothingmodel.java

📁 搞算法预测的可以来看。有移动平均法
💻 JAVA
📖 第 1 页 / 共 3 页
字号:
    /**     * Returns the forecast value of the dependent variable for the given     * value of the (independent) time variable using a single exponential     * smoothing model. See the class documentation for details on the     * formulation used.     * @param t the value of the time variable for which a forecast     * value is required.     * @return the forecast value of the dependent variable at time, t.     * @throws IllegalArgumentException if there is insufficient historical     * data - observations passed to init - to generate a forecast for the     * given time value.     */    protected double forecast( double time )        throws IllegalArgumentException    {        double previousTime = time - getTimeInterval();        double previousYear = time - getTimeInterval()*periodsPerYear;                        // As a starting point, we set the first forecast value to be        //  the same as the observed value        if ( previousTime < getMinimumTimeValue()-TOLERANCE )            return getObservedValue( time );        try            {                double base = getBase( previousTime );                double trend = getTrend( previousTime );                double si = getSeasonalIndex( previousYear );                double forecast = (base+trend)*si;                return forecast;            }        catch ( IllegalArgumentException idex )            {                double base = getBase( maxObservedTime );                double trend = getTrend( maxObservedTime-getTimeInterval() );                double si = getSeasonalIndex( previousYear );                                double forecast = (base+(time-maxObservedTime)*trend) * si;                return forecast;            }    }        /**     * Calculates and returns the base value for the given time period. Except     * for the first "year" - where base values are not available - the base     * is calculated using a smoothed value of the previous base. See the     * class documentation for details on the formulation used.     * @param time the time value for which the trend is required.     * @return the estimated base value at the given period of time.     * @param IllegalArgumentException if the base cannot be determined for     * the given time period.     */    private double getBase( double time )        throws IllegalArgumentException    {        // TODO: Optimize this search by having data set sorted by time                // Search for previously calculated - and saved - base value        String timeVariable = getTimeVariable();        Iterator it = baseValues.iterator();        while ( it.hasNext() )            {                DataPoint dp = (DataPoint)it.next();                double dpTimeValue = dp.getIndependentValue( timeVariable );                if ( Math.abs(time-dpTimeValue) < TOLERANCE )                    return dp.getDependentValue();            }                if ( time <             getMinimumTimeValue()             +periodsPerYear*getTimeInterval()             +TOLERANCE )            throw new IllegalArgumentException(                         "Attempt to forecast for an invalid time "                         +time                         +" - before sufficient observations were made ("                         +getMinimumTimeValue()                         +periodsPerYear*getTimeInterval()+").");        // Saved base value not found, so calculate it        //  (and save it for future reference)        double previousTime = time - getTimeInterval();        double previousYear = time - periodsPerYear*getTimeInterval();        double base            = alpha*(getObservedValue(time)/getSeasonalIndex(previousYear))            + (1-alpha)*(getBase(previousTime)+getTrend(previousTime));        DataPoint dp = new Observation( base );        dp.setIndependentValue( timeVariable, time );        baseValues.add( dp );                return base;    }        /**     * Calculates and returns the trend for the given time period. Except     * for the initial periods - where forecasts are not available - the     * trend is calculated using forecast values, and not observed values.     * See the class documentation for details on the formulation used.     * @param time the time value for which the trend is required.     * @return the trend of the data at the given period of time.     * @param IllegalArgumentException if the trend cannot be determined for     * the given time period.     */    private double getTrend( double time )        throws IllegalArgumentException    {        // TODO: Optimize this search by having data set sorted by time        // Search for previously calculated - and saved - trend value        String timeVariable = getTimeVariable();        Iterator it = trendValues.iterator();        while ( it.hasNext() )            {                DataPoint dp = (DataPoint)it.next();                double dpTimeValue = dp.getIndependentValue( timeVariable );                if ( Math.abs(time-dpTimeValue) < TOLERANCE )                    return dp.getDependentValue();            }                if ( time < getMinimumTimeValue()+TOLERANCE )            throw new IllegalArgumentException("Attempt to forecast for an invalid time - before the observations began ("+getMinimumTimeValue()+").");        // Saved trend not found, so calculate it        //  (and save it for future reference)        double previousTime = time - getTimeInterval();        double trend            = beta*(getBase(time)-getBase(previousTime))            + (1-beta)*getTrend(previousTime);                DataPoint dp = new Observation( trend );        dp.setIndependentValue( timeVariable, time );        trendValues.add( dp );                return trend;    }    /**     * Returns the seasonal index for the given time period.     */        private double getSeasonalIndex( double time )        throws IllegalArgumentException    {        // TODO: Optimize this search by having data set sorted by time        // Handle initial conditions for seasonal index        if ( time             < getMinimumTimeValue()             +(NUMBER_OF_YEARS-1)*periodsPerYear-TOLERANCE )            return getSeasonalIndex( time                                     + periodsPerYear*getTimeInterval() );                // Search for previously calculated - and saved - seasonal index        String timeVariable = getTimeVariable();        Iterator it = seasonalIndex.iterator();        while ( it.hasNext() )            {                DataPoint dp = (DataPoint)it.next();                double dpTimeValue = dp.getIndependentValue( timeVariable );                if ( Math.abs(time-dpTimeValue) < TOLERANCE )                    return dp.getDependentValue();            }                // Saved seasonal index not found, so calculate it        //  (and save it for future reference)        double previousYear = time - getTimeInterval()*periodsPerYear;        double index = gamma*(getObservedValue(time)/getForecastValue(time))                       + (1-gamma)*getSeasonalIndex(previousYear);                DataPoint dp = new Observation( index );        dp.setIndependentValue( timeVariable, time );        seasonalIndex.add( dp );                return index;    }        /**     * Returns the current number of periods used in this model. This is also     * the minimum number of periods required in order to produce a valid     * forecast. Strictly speaking, for triple exponential smoothing only two     * previous periods are needed - though such a model would be of relatively     * little use. At least ten to fifteen prior observations would be     * preferred.     * @return the minimum number of periods used in this model.     */    protected int getNumberOfPeriods()    {        return 2*periodsPerYear;    }    /**     * Since this version of triple exponential smoothing uses the current     * observation to calculate a smoothed value, we must override the     * calculation of the accuracy indicators.     * @param dataSet the DataSet to use to evaluate this model, and to     *        calculate the accuracy indicators against.     */    protected void calculateAccuracyIndicators( DataSet dataSet )    {        // WARNING: THIS STILL NEEDS TO BE VALIDATED        // Note that the model has been initialized        initialized = true;        // Reset various helper summations        double sumErr = 0.0;        double sumAbsErr = 0.0;        double sumAbsPercentErr = 0.0;        double sumErrSquared = 0.0;        String timeVariable = getTimeVariable();        double timeDiff = getTimeInterval();        // Calculate the Sum of the Absolute Errors        Iterator it = dataSet.iterator();        while ( it.hasNext() )            {                // Get next data point                DataPoint dp = (DataPoint)it.next();                double x = dp.getDependentValue();                double time = dp.getIndependentValue( timeVariable );                double previousTime = time - timeDiff;                // Get next forecast value, using one-period-ahead forecast                double forecastValue                    = getForecastValue( previousTime )                    + getTrend( previousTime );                // Calculate error in forecast, and update sums appropriately                double error = forecastValue - x;                sumErr += error;                sumAbsErr += Math.abs( error );                sumAbsPercentErr += Math.abs( error / x );                sumErrSquared += error*error;            }        // Initialize the accuracy indicators        int n = dataSet.size();        accuracyIndicators.setBias( sumErr / n );        accuracyIndicators.setMAD( sumAbsErr / n );        accuracyIndicators.setMAPE( sumAbsPercentErr / n );        accuracyIndicators.setMSE( sumErrSquared / n );        accuracyIndicators.setSAE( sumAbsErr );    }    /**     * Returns the value of the smoothing constant, alpha, used in this model.     * @return the value of the smoothing constant, alpha.     * @see #getBeta     * @see #getGamma     */    public double getAlpha()    {        return alpha;    }    /**     * Returns the value of the trend smoothing constant, beta, used in this     * model.     * @return the value of the trend smoothing constant, beta.     * @see #getAlpha     * @see #getGamma     */    public double getBeta()    {        return beta;    }    /**     * Returns the value of the seasonal smoothing constant, gamma, used in     * this model.     * @return the value of the seasonal smoothing constant, gamma.     * @see #getAlpha     * @see #getBeta     */    public double getGamma()    {        return gamma;    }    /**     * Returns a one or two word name of this type of forecasting model. Keep     * this short. A longer description should be implemented in the toString     * method.     * @return a string representation of the type of forecasting model     *         implemented.     */    public String getForecastType()    {        return "triple exponential smoothing";    }        /**     * This should be overridden to provide a textual description of the     * current forecasting model including, where possible, any derived     * parameters used.     * @return a string representation of the current forecast model, and its     *         parameters.     */    public String toString()    {        return "Triple exponential smoothing model, with smoothing constants of alpha="            + alpha + ", beta="            + beta  + ", gamma="            + gamma + ", and using an independent variable of "            + getIndependentVariable();    }}// Local Variables:// tab-width: 4// End:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -