⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 forecaster.java

📁 搞算法预测的可以来看。有移动平均法
💻 JAVA
字号:
////  OpenForecast - open source, general-purpose forecasting package.//  Copyright (C) 2002-2004  Steven R. Gould////  This library is free software; you can redistribute it and/or//  modify it under the terms of the GNU Lesser General Public//  License as published by the Free Software Foundation; either//  version 2.1 of the License, or (at your option) any later version.////  This library is distributed in the hope that it will be useful,//  but WITHOUT ANY WARRANTY; without even the implied warranty of//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU//  Lesser General Public License for more details.////  You should have received a copy of the GNU Lesser General Public//  License along with this library; if not, write to the Free Software//  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA//package net.sourceforge.openforecast;import java.util.ArrayList;import java.util.Iterator;import net.sourceforge.openforecast.models.MovingAverageModel;import net.sourceforge.openforecast.models.MultipleLinearRegressionModel;import net.sourceforge.openforecast.models.PolynomialRegressionModel;import net.sourceforge.openforecast.models.RegressionModel;import net.sourceforge.openforecast.models.SimpleExponentialSmoothingModel;import net.sourceforge.openforecast.models.DoubleExponentialSmoothingModel;import net.sourceforge.openforecast.models.TripleExponentialSmoothingModel;/** * The Forecaster class is a factory class that obtains the best * ForecastingModel for the given data set. The best forecasting model is * defined as the one that gives the lowest sum of absolute errors (SAE) * when reapplying the model to the historical or observed data. * @author Steven R. Gould */public class Forecaster{    /**     * Make constructor private to prevent this class from being instantiated     * directly.     */    private Forecaster()    {    }        /**     * Obtains the best forecasting model for the given DataSet. There is     * some intelligence built into this method to help it determine which     * forecasting model is best suited to the data. In particular, it will     * try applying various forecasting models, using different combinations     * of independent variables and select the one with the least Sum of     * Absolute Errors (SAE); i.e. the most accurate one based on historical     * data.     * @param dataSet a set of observations on which the given model should be     *        based.     * @return the best ForecastingModel for the given data set.     */    public static ForecastingModel getBestForecast( DataSet dataSet )    {        String independentVariable[] = dataSet.getIndependentVariables();        ForecastingModel bestModel = null;        String bestRegressionVariable = null;                        // Try single variable models        for ( int i=0; i<independentVariable.length; i++ )            {                ForecastingModel model;                                // Try the Regression Model                model = new RegressionModel( independentVariable[i] );                model.init( dataSet );                if ( betterThan( model, bestModel ) )                    {                        bestModel = model;                        bestRegressionVariable = independentVariable[i];                    }                                // Try the Polynomial Regression Model                // Note: if order is about the same as dataSet.size() then                //  we'll get a good/great fit, but highly variable forecasts                int order = 10;                if ( dataSet.size()/2 < order )                    order = dataSet.size()/2;                model = new PolynomialRegressionModel( independentVariable[i],                                                       order );                model.init( dataSet );                if ( betterThan( model, bestModel ) )                    bestModel = model;            }                        // Try multiple variable models                // Create a list of available variables        ArrayList availableVariables            = new ArrayList(independentVariable.length);        for ( int i=0; i<independentVariable.length; i++ )            availableVariables.add( independentVariable[i] );                // Create a list of variables to use - initially empty        ArrayList bestVariables = new ArrayList(independentVariable.length);                // While some variables still available to consider        while ( availableVariables.size() > 0 )            {                int count = bestVariables.size();                String workingList[] = new String[count+1];                if ( count > 0 )                    for ( int i=0; i<count; i++ )                        workingList[i] = (String)bestVariables.get(i);                                String bestAvailVariable = null;                                // For each available variable                Iterator it = availableVariables.iterator();                while ( it.hasNext() )                    {                        // Get current variable                        String currentVar = (String)it.next();                                                // Add variable to list to use for regression                        workingList[count] = currentVar;                                                // Do multiple variable linear regression                        ForecastingModel model                            = new MultipleLinearRegressionModel( workingList );                        model.init( dataSet );                                                //  If best so far, then save best variable                        if ( betterThan( model, bestModel ) )                            {                                bestModel = model;                                bestAvailVariable = currentVar;                            }                                                // Remove the current variable from the working list                        workingList[count] = null;                    }                                // If no better model could be found (by adding another                //     variable), then we're done                if ( bestAvailVariable == null )                    break;                                // Remove best variable from list of available vars                int bestVarIndex = availableVariables.indexOf( bestAvailVariable );                availableVariables.remove( bestVarIndex );                                // Add best variable to list of vars. to use                bestVariables.add( count, bestAvailVariable );                                count++;            }                        // Try time-series models        if ( dataSet.getTimeVariable() != null )            {                String timeVariable = dataSet.getTimeVariable();                                // Try moving average model                ForecastingModel model = new MovingAverageModel();                model.init( dataSet );                if ( betterThan( model, bestModel ) )                    bestModel = model;                                // Try moving average model using periods per year if avail.                if ( dataSet.getPeriodsPerYear() > 0 )                    {                        model = new MovingAverageModel( dataSet.getPeriodsPerYear() );                        model.init( dataSet );                        if ( betterThan( model, bestModel ) )                            bestModel = model;                    }                                // TODO: Vary the period and try other MA models                // TODO: Consider appropriate use of time period in this                                // Try the best fit simple exponential smoothing model                model = SimpleExponentialSmoothingModel.getBestFitModel(dataSet);                if ( betterThan( model, bestModel ) )                    bestModel = model;                                // Try the best fit double exponential smoothing model                model = DoubleExponentialSmoothingModel.getBestFitModel(dataSet);                if ( betterThan( model, bestModel ) )                    bestModel = model;                                // Try the best fit triple exponential smoothing model                model = TripleExponentialSmoothingModel.getBestFitModel(dataSet);                if ( betterThan( model, bestModel ) )                    bestModel = model;                                            }                return bestModel;    }        /**     * A helper method to determine, based on the existing accuracy indicators,     * whether one model is "better than" a second model. This is done using     * the accuracy indicators exposed by each model, as defined in the     * ForecastingModel interface.     *     * <p>Generally, model2 should be the model that you expect to be worse. It     * can also be <code>null</code> if no model2 has been selected. model1     * cannot be <code>null</code>. If model2 is <code>null</code>, then     * betterThan will return true on the assumption that some model, any     * model, is better than no model.     *     * <p>The determination of which model is "best" is definitely subjective     * when the two models are close. The approach implemented here is to     * consider all current accuracy indicators (which admittedly are not     * independent of each other), and if more indicators are in favor of one     * model, then betterThan will return true.     *     * <p>It is expected that this implementation may change over time, so do     * not depend on the approach described here. Rather just consider that     * this method will implement a reasonable comparison of two models.     * @param model1 the first model to compare.     * @param model2 the second model to compare. If model1 is determined to     *        be "better than" model2, then true is returned. model2 can be     *        <code>null</code> representing the absence of a model.     * @return true if model1 is "better than" model2; otherwise false.     */    private static boolean betterThan( ForecastingModel model1, ForecastingModel model2 )    {        // Special case. Any model is better than no model!        if ( model2 == null )            return true;                double tolerance = 0.00000001;        int score = 0;        if ( model1.getBias()-model2.getBias() <= tolerance )            score++;        else if ( model1.getBias()-model2.getBias() >= tolerance )            score--;                if ( model1.getMAD()-model2.getMAD() <= tolerance )            score++;        else if ( model1.getMAD()-model2.getMAD() >= tolerance )            score--;                if ( model1.getMAPE()-model2.getMAPE() <= tolerance )            score++;        else if ( model1.getMAPE()-model2.getMAPE() >= tolerance )            score--;                if ( model1.getMSE()-model2.getMSE() <= tolerance )            score++;        else if ( model1.getMSE()-model2.getMSE() >= tolerance )            score--;                if ( model1.getSAE()-model2.getSAE() <= tolerance )            score++;        else if ( model1.getSAE()-model2.getSAE() >= tolerance )            score--;                if ( score == 0 )            {                // At this point, we're still unsure which one is best                //  so we'll take another approach                double diff = model1.getBias() - model2.getBias()                    + model1.getMAD()  - model2.getMAD()                    + model1.getMAPE() - model2.getMAPE()                    + model1.getMSE()  - model2.getMSE()                    + model1.getSAE()  - model2.getSAE();                return ( diff < 0 );            }                return ( score > 0 );    }}// Local Variables:// tab-width: 4// End:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -