⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄

📁 计算机图形学网络课程
💻
📖 第 1 页 / 共 5 页
字号:
style='font-size:14.0pt;mso-bidi-font-size:10.0pt;font-family:宋体;mso-ascii-font-family:
"Times New Roman";mso-hansi-font-family:"Times New Roman";color:blue'>图形变换</span><span
lang=EN-US style='font-size:14.0pt;mso-bidi-font-size:10.0pt;color:blue'><o:p></o:p></span></p>

<p align=center style='text-align:center'><b><span lang=EN-US style='font-size:
18.0pt;color:green'>6.1</span><span lang=EN-US style='color:green'> </span></b><b><span
style='font-size:18.0pt;font-family:仿宋_GB2312;color:green'>数学基础</span></b></p>

<p><span lang=EN-US style='mso-ascii-font-family:楷体_GB2312;mso-fareast-font-family:
楷体_GB2312'>&nbsp;&nbsp;</span><span lang=EN-US style='font-family:楷体_GB2312'> 本节简要回顾图形变换中需要大量用到的矢量和矩阵的有关内容。</span></p>

<p><b><span lang=EN-US style='font-size:10.0pt;font-family:幼圆;color:gray'><a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Txt_6_005.htm"><span
style='text-decoration:none;text-underline:none'><!--[if gte vml 1]><v:shapetype
 id="_x0000_t75" coordsize="21600,21600" o:spt="75" o:preferrelative="t"
 path="m@4@5l@4@11@9@11@9@5xe" filled="f" stroked="f">
 <v:stroke joinstyle="miter"/>
 <v:formulas>
  <v:f eqn="if lineDrawn pixelLineWidth 0"/>
  <v:f eqn="sum @0 1 0"/>
  <v:f eqn="sum 0 0 @1"/>
  <v:f eqn="prod @2 1 2"/>
  <v:f eqn="prod @3 21600 pixelWidth"/>
  <v:f eqn="prod @3 21600 pixelHeight"/>
  <v:f eqn="sum @0 0 1"/>
  <v:f eqn="prod @6 1 2"/>
  <v:f eqn="prod @7 21600 pixelWidth"/>
  <v:f eqn="sum @8 21600 0"/>
  <v:f eqn="prod @7 21600 pixelHeight"/>
  <v:f eqn="sum @10 21600 0"/>
 </v:formulas>
 <v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect"/>
 <o:lock v:ext="edit" aspectratio="t"/>
</v:shapetype><v:shape id="_x0000_i1025" type="#_x0000_t75" alt=""
 href="..\CG_Txt_6_005.htm" style='width:21pt;height:37.5pt' o:button="t">
 <v:imagedata src="./第六章%20附录——图形变换.files/image001.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/material/CG_Gif_pub_021.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=28 height=50
src="./第六章%20附录——图形变换.files/image001.gif" v:shapes="_x0000_i1025"><![endif]></span></a></span></b><b><span
lang=EN-US style='font-family:幼圆;color:gray'><a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Txt_6_005.htm"><span
style='color:gray'>矢量运算</span></a><o:p></o:p></span></b></p>

<p style='line-height:200%'>矢量是一有向线段,具有方向和大小两个参数。设有两个矢量<span lang=EN-US>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;
</span><i><span lang=EN-US style='font-family:"Times New Roman"'>V</span></i><sub><span
lang=EN-US>1</span></sub>(<i><span lang=EN-US style='font-family:"Times New Roman"'>x</span></i><sub><span
lang=EN-US>1</span></sub>,<i><span lang=EN-US style='font-family:"Times New Roman"'>y</span></i><sub><span
lang=EN-US>1</span></sub>,<i><span lang=EN-US style='font-family:"Times New Roman"'>z</span></i><sub><span
lang=EN-US>1</span></sub>),<i><span lang=EN-US style='font-family:"Times New Roman"'>V</span></i><sub><span
lang=EN-US>2</span></sub>(<i><span lang=EN-US style='font-family:"Times New Roman"'>x</span></i><sub><span
lang=EN-US>2</span></sub>,<i><span lang=EN-US style='font-family:"Times New Roman"'>y</span></i><sub><span
lang=EN-US>2</span></sub>,<i><span lang=EN-US style='font-family:"Times New Roman"'>z</span></i><sub><span
lang=EN-US>2</span></sub>)。</p>

<p><span lang=EN-US>&nbsp; 1) 矢量的长度 </span></p>

<p style='margin-left:36.0pt'><span lang=EN-US><!--[if gte vml 1]><v:shape
 id="_x0000_i1026" type="#_x0000_t75" alt="" style='width:132.75pt;height:27.75pt'>
 <v:imagedata src="./第六章%20附录——图形变换.files/image002.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Gif_6_201.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=177 height=37
src="./第六章%20附录——图形变换.files/image002.gif" v:shapes="_x0000_i1026"><![endif]></span></p>

<p><span lang=EN-US>&nbsp; 2) 数乘矢量 </span></p>

<p style='margin-left:36.0pt'><span lang=EN-US><!--[if gte vml 1]><v:shape
 id="_x0000_i1027" type="#_x0000_t75" alt="" style='width:102pt;height:21pt'>
 <v:imagedata src="./第六章%20附录——图形变换.files/image003.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Gif_6_202.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=136 height=28
src="./第六章%20附录——图形变换.files/image003.gif" v:shapes="_x0000_i1027"><![endif]></span></p>

<p><span lang=EN-US>&nbsp; 3) 两个矢量之和 </span></p>

<p style='margin-left:36.0pt'><span lang=EN-US><!--[if gte vml 1]><v:shape
 id="_x0000_i1028" type="#_x0000_t75" alt="" style='width:290.25pt;height:21pt'>
 <v:imagedata src="./第六章%20附录——图形变换.files/image004.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Gif_6_203.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=387 height=28
src="./第六章%20附录——图形变换.files/image004.gif" v:shapes="_x0000_i1028"><![endif]></span></p>

<p style='margin-left:36.0pt'><span lang=EN-US><!--[if gte vml 1]><v:shape
 id="_x0000_i1029" type="#_x0000_t75" alt="" style='width:128.25pt;height:91.5pt'>
 <v:imagedata src="./第六章%20附录——图形变换.files/image005.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Gif_6_001.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=171 height=122
src="./第六章%20附录——图形变换.files/image005.gif" v:shapes="_x0000_i1029"><![endif]></span></p>

<p><span lang=EN-US>&nbsp; 4) 两个矢量的点积 </span></p>

<p style='margin-left:36.0pt;line-height:200%'><span lang=EN-US><!--[if gte vml 1]><v:shape
 id="_x0000_i1030" type="#_x0000_t75" alt="" style='width:321.75pt;height:24pt'>
 <v:imagedata src="./第六章%20附录——图形变换.files/image006.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Gif_6_204.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=429 height=32
src="./第六章%20附录——图形变换.files/image006.gif" v:shapes="_x0000_i1030"><![endif]></span></p>

<p style='margin-left:36.0pt'>点积满足交换律和分配律</p>

<p style='margin-left:36.0pt'><span lang=EN-US><!--[if gte vml 1]><v:shape
 id="_x0000_i1031" type="#_x0000_t75" alt="" style='width:63pt;height:17.25pt'>
 <v:imagedata src="./第六章%20附录——图形变换.files/image007.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Gif_6_205.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=84 height=23
src="./第六章%20附录——图形变换.files/image007.gif" v:shapes="_x0000_i1031"><![endif]>&nbsp;</span></p>

<p style='margin-left:36.0pt'><span lang=EN-US><!--[if gte vml 1]><v:shape
 id="_x0000_i1032" type="#_x0000_t75" alt="" style='width:120.75pt;height:18pt'>
 <v:imagedata src="./第六章%20附录——图形变换.files/image008.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Gif_6_206.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=161 height=24
src="./第六章%20附录——图形变换.files/image008.gif" v:shapes="_x0000_i1032"><![endif]></span></p>

<p style='margin-left:36.0pt'><span lang=EN-US><!--[if gte vml 1]><v:shape
 id="_x0000_i1033" type="#_x0000_t75" alt="" style='width:148.5pt;height:72.75pt'>
 <v:imagedata src="./第六章%20附录——图形变换.files/image009.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Gif_6_002.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=198 height=97
src="./第六章%20附录——图形变换.files/image009.gif" v:shapes="_x0000_i1033"><![endif]></span></p>

<p><span lang=EN-US>&nbsp; 5) 两个矢量的叉积</span></p>

<p><span lang=EN-US>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; <!--[if gte vml 1]><v:shape
 id="_x0000_i1034" type="#_x0000_t75" alt="" style='width:330.75pt;height:80.25pt'>
 <v:imagedata src="./第六章%20附录——图形变换.files/image010.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Gif_6_207.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=441 height=107
src="./第六章%20附录——图形变换.files/image010.gif" v:shapes="_x0000_i1034"><![endif]></span></p>

<p style='margin-right:36.0pt;margin-left:36.0pt'>叉积满足反交换律和分配律</p>

<p style='margin-right:36.0pt;margin-left:36.0pt'><span lang=EN-US><!--[if gte vml 1]><v:shape
 id="_x0000_i1035" type="#_x0000_t75" alt="" style='width:71.25pt;height:17.25pt'>
 <v:imagedata src="./第六章%20附录——图形变换.files/image011.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Gif_6_208.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=95 height=23
src="./第六章%20附录——图形变换.files/image011.gif" v:shapes="_x0000_i1035"><![endif]></span></p>

<p style='margin-right:36.0pt;margin-left:36.0pt'><span lang=EN-US><!--[if gte vml 1]><v:shape
 id="_x0000_i1036" type="#_x0000_t75" alt="" style='width:138pt;height:18pt'>
 <v:imagedata src="./第六章%20附录——图形变换.files/image012.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Gif_6_209.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=184 height=24
src="./第六章%20附录——图形变换.files/image012.gif" v:shapes="_x0000_i1036"><![endif]></span></p>

<p style='margin-right:36.0pt;margin-left:36.0pt'><span lang=EN-US><!--[if gte vml 1]><v:shape
 id="_x0000_i1037" type="#_x0000_t75" alt="" style='width:120.75pt;height:134.25pt'>
 <v:imagedata src="./第六章%20附录——图形变换.files/image013.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Gif_6_003.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=161 height=179
src="./第六章%20附录——图形变换.files/image013.gif" v:shapes="_x0000_i1037"><![endif]></span></p>

<p><span lang=EN-US><![if !supportEmptyParas]>&nbsp;<![endif]><o:p></o:p></span></p>

<p><b><span lang=EN-US style='font-size:10.0pt;font-family:幼圆;color:gray'><a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Txt_6_006.htm"><span
style='text-decoration:none;text-underline:none'><!--[if gte vml 1]><v:shape
 id="_x0000_i1038" type="#_x0000_t75" alt="" href="..\CG_Txt_6_006.htm"
 style='width:21pt;height:37.5pt' o:button="t">
 <v:imagedata src="./第六章%20附录——图形变换.files/image001.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/material/CG_Gif_pub_021.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=28 height=50
src="./第六章%20附录——图形变换.files/image001.gif" v:shapes="_x0000_i1038"><![endif]></span></a></span></b><b><span
lang=EN-US style='font-family:幼圆;color:gray'><a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Txt_6_006.htm"><span
style='color:gray'>矩阵运算</span></a><o:p></o:p></span></b></p>

<p style='margin-right:36.0pt;margin-left:36.0pt'>设有一个<i><span lang=EN-US
style='font-family:"Times New Roman"'>m</span></i>行<i><span lang=EN-US
style='font-family:"Times New Roman"'>n</span></i>列矩阵<i><span lang=EN-US
style='font-family:"Times New Roman"'>A</span></i></p>

<p align=center style='margin-right:36.0pt;margin-left:36.0pt;text-align:center'><span
lang=EN-US><!--[if gte vml 1]><v:shape id="_x0000_i1039" type="#_x0000_t75"
 alt="" style='width:191.25pt;height:72.75pt'>
 <v:imagedata src="./第六章%20附录——图形变换.files/image014.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Gif_6_257.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=255 height=97
src="./第六章%20附录——图形变换.files/image014.gif" v:shapes="_x0000_i1039"><![endif]></span></p>

<p style='margin-right:36.0pt;margin-left:36.0pt;line-height:200%'><span
lang=EN-US><!--[if gte vml 1]><v:shape id="_x0000_i1040" type="#_x0000_t75"
 alt="" style='width:267pt;height:21pt'>
 <v:imagedata src="./第六章%20附录——图形变换.files/image015.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Gif_6_285.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=356 height=28
src="./第六章%20附录——图形变换.files/image015.gif" v:shapes="_x0000_i1040"><![endif]><!--[if gte vml 1]><v:shape
 id="_x0000_i1041" type="#_x0000_t75" alt="" style='width:280.5pt;height:24.75pt'>
 <v:imagedata src="./第六章%20附录——图形变换.files/image016.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Gif_6_259.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=374 height=33
src="./第六章%20附录——图形变换.files/image016.gif" v:shapes="_x0000_i1041"><![endif]></span></p>

<p><span lang=EN-US>&nbsp; 1) 矩阵的加法运算 </span></p>

<p style='margin-left:36.0pt;line-height:200%'>设两个矩阵<i><span lang=EN-US
style='font-family:"Times New Roman"'>A</span></i>和<i><span lang=EN-US
style='font-family:"Times New Roman"'>B</span></i>都是<i><span lang=EN-US
style='font-family:"Times New Roman"'>m</span></i><span lang=EN-US>x</span><i><span
lang=EN-US style='font-family:"Times New Roman"'>n</span></i>的,把他们对应位置的元素相加而得到的矩阵叫做<i><span
lang=EN-US style='font-family:"Times New Roman"'>A</span></i>、<i><span
lang=EN-US style='font-family:"Times New Roman"'>B</span></i>的<span
style='color:maroon'>和</span>,记为<i><span lang=EN-US style='font-family:"Times New Roman";
color:maroon'>A</span></i><span style='color:maroon'>+</span><i><span
lang=EN-US style='font-family:"Times New Roman";color:maroon'>B</span></i></p>

<p align=center style='margin-left:36.0pt;text-align:center'><span lang=EN-US><!--[if gte vml 1]><v:shape
 id="_x0000_i1042" type="#_x0000_t75" alt="" style='width:274.5pt;height:72.75pt'>
 <v:imagedata src="./第六章%20附录——图形变换.files/image017.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Gif_6_260.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=366 height=97
src="./第六章%20附录——图形变换.files/image017.gif" v:shapes="_x0000_i1042"><![endif]></span></p>

<p style='margin-left:36.0pt'>只有在两个矩阵的行数和列数都相同时才能加法。</p>

<p><span lang=EN-US>&nbsp; 2) 数乘矩阵 </span></p>

<p style='margin-left:36.0pt'>用数<span lang=EN-US>k乘矩阵A的每一个元素而得的矩阵叫做</span><i><span
lang=EN-US style='font-family:"Times New Roman"'>k</span></i>与<i><span
lang=EN-US style='font-family:"Times New Roman"'>A</span></i>之<span
style='color:maroon'>积</span>,记为<i><span lang=EN-US style='font-family:"Times New Roman";
color:maroon'>kA</span></i></p>

<p align=center style='margin-left:36.0pt;text-align:center'><span lang=EN-US><!--[if gte vml 1]><v:shape
 id="_x0000_i1043" type="#_x0000_t75" alt="" style='width:189pt;height:72.75pt'>
 <v:imagedata src="./第六章%20附录——图形变换.files/image018.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Gif_6_261.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=252 height=97
src="./第六章%20附录——图形变换.files/image018.gif" v:shapes="_x0000_i1043"><![endif]></span></p>

<p><span lang=EN-US>&nbsp; 3) 矩阵的乘法运算 </span></p>

<p style='margin-left:36.0pt'>只有当前一矩阵的<span style='color:maroon'>列数</span>等于后一矩阵的<span
style='color:maroon'>行数</span>时两个矩阵才能相乘。</p>

<p style='margin-left:36.0pt'><span lang=EN-US><!--[if gte vml 1]><v:shape
 id="_x0000_i1044" type="#_x0000_t75" alt="" style='width:235.5pt;height:24pt'>
 <v:imagedata src="./第六章%20附录——图形变换.files/image019.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter6/CG_Gif_6_262.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=314 height=32
src="./第六章%20附录——图形变换.files/image019.gif" v:shapes="_x0000_i1044"><![endif]></span></p>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -