📄
字号:
{mso-list-id:1166939533;
mso-list-type:hybrid;
mso-list-template-ids:-532779778 -302223014 368193766 1231437054 1899647784 -1899190784 -1171861922 -2076557624 -728455252 -584286974;}
@list l7:level1
{mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;}
@list l8
{mso-list-id:1187598205;
mso-list-type:hybrid;
mso-list-template-ids:-1902893822 1035927240 -757574838 -1447376390 404505990 -1299425568 1438572626 1788100140 1903866832 -434965272;}
@list l8:level1
{mso-level-number-format:bullet;
mso-level-text:\F0B7;
mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;
mso-ansi-font-size:10.0pt;
font-family:Symbol;}
@list l9
{mso-list-id:1593204035;
mso-list-type:hybrid;
mso-list-template-ids:1371669926 210013694 -1235599862 -1887547686 -1999319548 -428714762 -989546564 1477493168 -29095932 9972570;}
@list l9:level1
{mso-level-tab-stop:36.0pt;
mso-level-number-position:left;
text-indent:-18.0pt;}
ol
{margin-bottom:0cm;}
ul
{margin-bottom:0cm;}
-->
</style>
</head>
<body lang=ZH-CN link=blue vlink=purple style='tab-interval:21.0pt;text-justify-trim:
punctuation'>
<div class=Section1 style='layout-grid:15.6pt'>
<p class=MsoNormal align=center style='text-align:center'><span
style='font-size:24.0pt;font-family:隶书;color:blue'>第三章 几何造型技术<span lang=EN-US><o:p></o:p></span></span></p>
<table border=1 cellspacing=1 cellpadding=0 width="89%" style='width:89.0%;
mso-cellspacing:.7pt'>
<tr style='height:9.75pt'>
<td width="99%" colspan=2 style='width:99.62%;background:green;padding:.75pt .75pt .75pt .75pt;
height:9.75pt'>
<p class=MsoNormal style='mso-line-height-alt:9.75pt'><span style='font-size:
10.0pt;font-family:幼圆;color:yellow'>教学目标</span><span lang=EN-US
style='font-size:12.0pt;font-family:宋体'><o:p></o:p></span></p>
</td>
</tr>
<tr style='height:9.75pt'>
<td width="99%" colspan=2 style='width:99.62%;background:#CCFF99;padding:
.75pt .75pt .75pt .75pt;height:9.75pt'>
<p class=MsoNormal style='mso-line-height-alt:9.75pt'><span style='font-size:
10.0pt;font-family:幼圆;color:#996633'>总体目标:掌握几何造型技术的基本原理,理解三维图形的构造思想。</span><span
lang=EN-US style='font-size:12.0pt;font-family:宋体'><o:p></o:p></span></p>
</td>
</tr>
<tr style='height:9.75pt'>
<td width="99%" colspan=2 style='width:99.62%;background:#CCFF99;padding:
.75pt .75pt .75pt .75pt;height:9.75pt'>
<p class=MsoNormal style='mso-line-height-alt:9.75pt'><span style='font-size:
10.0pt;font-family:宋体;mso-ascii-font-family:"Times New Roman";mso-hansi-font-family:
"Times New Roman";color:blue'>通过本章的学习,应能做到:</span><span lang=EN-US
style='font-size:12.0pt;font-family:宋体'><o:p></o:p></span></p>
</td>
</tr>
<tr style='height:45.0pt'>
<td width="4%" style='width:4.96%;background:#CCFF99;padding:.75pt .75pt .75pt .75pt;
height:45.0pt'>
<p align=center style='text-align:center'><span lang=EN-US><!--[if gte vml 1]><v:shapetype
id="_x0000_t75" coordsize="21600,21600" o:spt="75" o:preferrelative="t"
path="m@4@5l@4@11@9@11@9@5xe" filled="f" stroked="f">
<v:stroke joinstyle="miter"/>
<v:formulas>
<v:f eqn="if lineDrawn pixelLineWidth 0"/>
<v:f eqn="sum @0 1 0"/>
<v:f eqn="sum 0 0 @1"/>
<v:f eqn="prod @2 1 2"/>
<v:f eqn="prod @3 21600 pixelWidth"/>
<v:f eqn="prod @3 21600 pixelHeight"/>
<v:f eqn="sum @0 0 1"/>
<v:f eqn="prod @6 1 2"/>
<v:f eqn="prod @7 21600 pixelWidth"/>
<v:f eqn="sum @8 21600 0"/>
<v:f eqn="prod @7 21600 pixelHeight"/>
<v:f eqn="sum @10 21600 0"/>
</v:formulas>
<v:path o:extrusionok="f" gradientshapeok="t" o:connecttype="rect"/>
<o:lock v:ext="edit" aspectratio="t"/>
</v:shapetype><v:shape id="_x0000_i1025" type="#_x0000_t75" alt="" style='width:13.5pt;
height:13.5pt'>
<v:imagedata src="./第三章%20几何造型技术1(参数曲线和曲面).files/image001.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/material/CG_Gif_pub_015.gif"/>
</v:shape><![endif]--><![if !vml]><img width=18 height=18
src="./第三章%20几何造型技术1(参数曲线和曲面).files/image001.gif" v:shapes="_x0000_i1025"><![endif]></span></p>
</td>
<td width="94%" style='width:94.48%;background:#CCFF99;padding:.75pt .75pt .75pt .75pt;
height:45.0pt'>
<p><span style='font-size:10.0pt;font-family:楷体_GB2312'>掌握下列概念:<span
lang=EN-US><a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_006.htm"><span
style='color:red'>参数曲线和曲面</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_009.htm#1"><span
style='color:red'>位置矢量</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_009.htm#2"><span
style='color:red'>切矢量</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_009.htm#3"><span
style='color:red'>法矢量</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_009.htm#4"><span
style='color:red'>曲率</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_009.htm#4"><span
style='color:red'>挠率</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_010.htm#1"><span
style='color:red'>插值</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_010.htm#2"><span
style='color:red'>逼近</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_010.htm#3"><span
style='color:red'>拟合</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_010.htm#4"><span
style='color:red'>光顺</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_011.htm#1"><span
style='color:red'>参数化</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_013.htm#1"><span
style='color:red'>参数连续性</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_013.htm#2"><span
style='color:red'>几何连续性</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_015.htm#1"><span
style='color:red'>Bernstein基函数</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_014.htm"><span
style='color:red'>Bezier曲线</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_022.htm#1"><span
style='color:red'>B样条基</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_021.htm"><span
style='color:red'>B样条曲线</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_027.htm"><span
style='color:red'>Nurbs曲线</span></a>和<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_036.htm#1"><span
style='color:red'>形体表示模型</span></a>。</span></span></p>
</td>
</tr>
<tr style='height:45.0pt'>
<td width="4%" style='width:4.96%;background:#CCFF99;padding:.75pt .75pt .75pt .75pt;
height:45.0pt'>
<p align=center style='text-align:center'><span lang=EN-US><!--[if gte vml 1]><v:shape
id="_x0000_i1026" type="#_x0000_t75" alt="" style='width:13.5pt;height:13.5pt'>
<v:imagedata src="./第三章%20几何造型技术1(参数曲线和曲面).files/image001.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/material/CG_Gif_pub_015.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=18 height=18
src="./第三章%20几何造型技术1(参数曲线和曲面).files/image001.gif" v:shapes="_x0000_i1026"><![endif]></span></p>
</td>
<td width="94%" style='width:94.48%;background:#CCFF99;padding:.75pt .75pt .75pt .75pt;
height:45.0pt'>
<p><span style='font-size:10.0pt;font-family:楷体_GB2312'>掌握<span lang=EN-US><a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_007.htm"><span
style='color:red'>曲线曲面的参数表示方法</span></a><span style='color:black'>和</span><a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_013.htm#3"><span
style='color:red'>连续性</span></a><span style='color:black'>的基本概念、</span><a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_016.htm#1"><span
style='color:red'>Bezier曲线的deCasteljau递推算法</span></a><span style='color:black'>、</span><a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_018.htm"><span
style='color:red'>Bezier曲线的升阶算法</span></a><span style='color:black'>、</span><a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_019.htm"><span
style='color:red'>Bezier曲面的递推算法</span></a><span style='color:black'>和</span><a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_022.htm#1"><span
style='color:red'>B样条基</span></a><span style='color:black'>及</span><a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_024.htm"><span
style='color:red'>B样条曲线的DeboorCox递推算法</span></a>的基本思想。</span></span></p>
</td>
</tr>
<tr style='height:19.5pt'>
<td width="4%" style='width:4.96%;background:#CCFF99;padding:.75pt .75pt .75pt .75pt;
height:19.5pt'>
<p align=center style='text-align:center'><span lang=EN-US><!--[if gte vml 1]><v:shape
id="_x0000_i1027" type="#_x0000_t75" alt="" style='width:13.5pt;height:13.5pt'>
<v:imagedata src="./第三章%20几何造型技术1(参数曲线和曲面).files/image001.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/material/CG_Gif_pub_015.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=18 height=18
src="./第三章%20几何造型技术1(参数曲线和曲面).files/image001.gif" v:shapes="_x0000_i1027"><![endif]></span></p>
</td>
<td width="94%" style='width:94.48%;background:#CCFF99;padding:.75pt .75pt .75pt .75pt;
height:19.5pt'>
<p class=MsoNormal><span style='font-size:10.0pt;font-family:楷体_GB2312'>熟悉<span
lang=EN-US><a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_012.htm"><span
style='color:red'>参数曲面的代数和几何形式</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_020.htm"><span
style='color:red'>三边Bezier曲面片</span></a>的基本思想、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_026.htm"><span
style='color:red'>B样条曲面的定义</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_028.htm"><span
style='color:red'>Nurbs曲线的定义</span></a>及<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_029.htm"><span
style='color:red'>齐次坐标</span></a>表示、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_046.htm"><span
style='color:red'>线与线求交算法</span></a>的基本思想。</span></span><span lang=EN-US
style='font-size:12.0pt;font-family:宋体'><o:p></o:p></span></p>
</td>
</tr>
<tr style='height:20.25pt'>
<td width="4%" style='width:4.96%;background:#CCFF99;padding:.75pt .75pt .75pt .75pt;
height:20.25pt'>
<p align=center style='text-align:center'><span lang=EN-US><!--[if gte vml 1]><v:shape
id="_x0000_i1028" type="#_x0000_t75" alt="" style='width:13.5pt;height:13.5pt'>
<v:imagedata src="./第三章%20几何造型技术1(参数曲线和曲面).files/image001.gif" o:href="http://learn.bitsde.com/hep/jisuanjituxing/material/CG_Gif_pub_015.gif"/>
</v:shape><![endif]--><![if !vml]><img border=0 width=18 height=18
src="./第三章%20几何造型技术1(参数曲线和曲面).files/image001.gif" v:shapes="_x0000_i1028"><![endif]></span></p>
</td>
<td width="94%" style='width:94.48%;background:#CCFF99;padding:.75pt .75pt .75pt .75pt;
height:20.25pt'>
<p class=MsoNormal><span style='font-size:10.0pt;font-family:楷体_GB2312'>了解<span
lang=EN-US><a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_025.htm"><span
style='color:red'>B样条曲线的节点插入算法</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_030.htm"><span
style='color:red'>Nubrs曲线权因子的几何意义</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_031.htm"><span
style='color:red'>圆锥曲线的Nurbs表示</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_033.htm"><span
style='color:red'>Nurbs曲面的定义及性质</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_037.htm"><span
style='color:red'>形体的边界表示模型</span></a>、<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_047.htm"><span
style='color:red'>线与面</span></a>及<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_048.htm"><span
style='color:red'>面与面求交</span></a>的基本思想和<a
href="http://learn.bitsde.com/hep/jisuanjituxing/Chapter3/CG_Txt_3_049.htm"><span
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -