📄 rfc178.txt
字号:
Network Working Group Ira W. CottonRequest for Comments: 178 MITRENIC: 7118 June 27, 1971 NETWORK GRAPHIC ATTENTION HANDLING1.0 INTRODUCTION Discussions of network graphic protocols have thus far primarily dealt with protocols for the description of graphic data to be displayed. RFC 86 proposed a Network Standard Graphic Data Stream (NGDS) which would serve to convey graphic images expressed in the Network Standard Display List (NGDL). RFC 94 expanded on this proposal, and pointed out some shortcomings of the original scheme. RFC 125 also replied to RFC 86 with comments and extensions, but also recognized that a protocol for graphic display alone is insufficient to support an interactive graphic system.1.1 TOPICS COVERED The present paper addresses itself to this requirement. The process of attention handling is briefly described, various graphic configurations are discussed, input devices are surveyed to identify the types of data which they produce, and an attention protocol is suggested.1.2 VIEWPOINT It should be made clear at the onset that the discussion which follow will be from the viewpoint of a graphics user or a graphic application program serving one or more users. Our concern is with third-level protocols only. We assume the network is capable of delivering arbitrary bit streams from terminal to graphic application program, but don't care how this is accomplished.2.0 ATTENTION-HANDLING In order to demonstrate the need for an attention protocol, we must first define what is meant by "attention" and "attention-handling." We therefore begin by borrowing the definitions given in a recent survey of this area(1).Cotton [Page 1]RFC 178 NETWORK GRAPHIC ATTENTION HANDLING June 19712.1 DEFINITION Graphic attention handling refers to the processes and techniques whereby human inputs to a computer graphic system are serviced. An attention event, or simply "attention," is a stimulus to the graphic system, such as that resulting from a keystroke or light pen usage, which presents information to the system. Servicing includes accepting or detecting the hardware input, processing it to determine its intended meaning, and either passing this information to a user routine or taking some _immediate_ action related to the display and/or its underlying data structure, or both. The emphasis is on "immediate." Attention-handling is not intended to include any detailed, application-oriented processing which the attention information may indicate is to be performed. Thus, attention handling may be considered separately from any particular application.2.2 INDEPENDENT FROM DISPLAY CONSIDERATIONS Not only may attention handling be considered separately from any application, but attention generating hardware may be considered separately from display hardware. Oftentimes, it is only coincidental that they come in the same package. Indeed, in some configurations an input be processed locally (by the terminal) to provide the appropriate response. For example, a keystroke may or may not cause a character to be displayed on a terminal, and the logic causing the display may or may not be local (within the terminal). The keystroke might be immediately displayed locally, as in the case of an alphanumeric display terminal which buffers keystrokes and transmits messages of many characters or it might be transmitted to the host computer and "echoed" back for display as in teletype-like terminals. The question is not limited to such simple input devices as keyboards. So-called "intelligent terminals" with integrated programmable logic or even complete small computers can process more sophisticated attentions locally, and even alter a local distillate of the central (host) data structure without central knowledge. This raises the problem of insuring that the display and the graphic application program do not get "out of sync," and requires a more expressive protocol from terminal to host processor.Cotton [Page 2]RFC 178 NETWORK GRAPHIC ATTENTION HANDLING June 19713.0 SYSTEM CONFIGURATIONS We now turn to a consideration of the evolution of system configurations for computer graphics. Our intent is to demonstrate that just as display generation has evolved from the output of device dependent codes to a generalized protocol, so too should attention generation evolve.3.1 STAND-ALONE CONFIGURATION Figure 1 illustrates the stand-alone graphic configuration which was the first and is still the most common. As we have stressed, input and output are entirely independent, and are shown as separate devices. In this configuration, display code generation and interrupt processing are both done within the graphic application program in the host processor. The graphic application is very device-dependent.3.2 STAND-ALONE CONFIGURATION WITH STANDARDIZED FORMATS The significant conceptual change occurs when the input and output processors are removed from the graphic application program. The graphic application program then generates output and accepts input in a generalized form, as illustrated in Figure 2. The important fact to note is that in order to accommodate additional (different) input and/or output devices, only these input/output processing routines must be replaced or altered. Graphic application programs may be designed without regard to which particular processing routine will be used. So far as the application program is concerned, device-independence has been achieved.Cotton [Page 3]RFC 178 NETWORK GRAPHIC ATTENTION HANDLING June 1971Figure 1 Stand-Alone Graphic Configuration +----------------------------+ | | _______ | +---------+-----------+ | / \ | | |OUTPUT | | / \ | | /-->|PROCESSOR |----|------------>| | | | / +-----------+ | \ / | | | | | \_______/ | | | | | OUTPUT DEVICE | | | +-----------+ | ______ | | \ |INPUT | | | \ | | \---|PROCESSOR |<-- |-------------|_______\ | +---------+-----------+ | | Graphic Application | INPUT DEVICE | Program | +----------------------------+ /SERVING\ HOST \USING /Figure 2 Stand-Alone Configuration with Standardized Input and Output Formats+-------------------------------------+ ______| | /---->/ \| +-----------+ |DEVICE-DEPENDENT/ ___/___ \| +-----------+ |--|---------------/ / \ || STANDARD | OUTPUT | | |DISPLAY LIST / \ /| +-----+DISPLAY LIST|PROCESSOR |-+ | | |__/| | ---|----------->| |----|---------------->\ /| | | | +-----------+ | \_______/| | | | | OUTPUT DEVICE(S)| | | | || | | | +-----------+ |DEVICE-DEPENDENT ______| | | | STANDARD +-----------+ |<-|----------------------| \| | |--|<-----------|INPUT | | |INPUT DATA ___|___ \| +-----+ ATTENTION |PROCESSOR |-+ | | \____\| | |<---|------------------| \| +-----------+ | |_________\| Graphic Application Program | INPUT DEVICE(S)| |+-------------------------------------+/SERVING\ HOST\USING /Cotton [Page 4]RFC 178 NETWORK GRAPHIC ATTENTION HANDLING June 19713.3 NETWORK CONFIGURATION When the stand-alone configuration with standardized formats is implemented on a network, the organization illustrated in Figure 3 results. In the network configuration, the graphic application program and the input and output processors may be in different hosts. The standardized formats become network standards, and now any using host with input/output processors conforming to the standard can access the graphic application program in the serving host. The network is transparent to the graphic configuration.3.4 NETWORK CONFIGURATION WITH INTELLIGENT TERMINAL The case of an intelligent graphics terminal configured in the network is illustrated in Figure 4. Here, input and output processors are located within the terminal itself. The using host serves only to connect the terminal to the network, and in the case of a terminal IMP, is dispensed with altogether. Any type of intelligent terminal may access any graphic application program if its (the terminals) input and output processing routines conform to the network standard. As before, the network is transparent to the graphic configuration. Figure 3 Network Configuration (Omitted due to complexity) Figure 4 Network Configuration with Intelligent Terminal (Omitted due to complexity)4.0 INPUT DEVICES We now turn to a survey of graphic input devices as suggested in RFC 87. The survey will concern itself with the characteristics of the attention information presented when the device is used (rather than, for example, human factors considerations). We wish to stress at the onset that we consider all devices equivalent in capability. By this we mean that with appropriate programming, any device can simulate any other device. Throughout the survey we will illustrate typical data conversions which might be performed, and at times discuss how various devices may be simulated. It is convenient to consider the characteristics of classes of devices. Information about particular commercial devices may be found in reference 5 and elsewhere. Table I presents a device class summary.Cotton [Page 5]RFC 178 NETWORK GRAPHIC ATTENTION HANDLING June 19714.1 PUSHBUTTONS Perhaps the first and most primitive class of input devices is the pushbutton, which presents some unique code to the system when depressed. In the simplest case, the code is equivalent to the knowledge that the button has been pushed, and may be just a flag. Beyond the basic pushbutton, more advanced key devices have been designed in a variety of ways. For example, each key may be associated with a single bit in a word or with a complex pattern (character or byte), multiple keys may or may not be able to be struck simultaneously (if so, their codes being combined in some defined way). The salient feature of the function key is that it presents two pieces of information to the system: the fact that a keystroke has occurred (which may be implicit), and some unique code related to it. More elaborate keyboards, be they teletypes or solid state devices with elaborate "overlays", are merely special cases of function keys. They present the same information, attention source plus a unique code. The fact that such a code may be associated with a displayable character is at this stage only incidental.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -