📄 rfc772.txt
字号:
and to furnish text, the MAIL command is used. SCHEME SELECTION: MRSQ MRSQ is the means by which a sender-MTP can test for MRSQ/MRCP implementation, select a particular scheme, reset its state, and even do some rudimentary negotiation. Its format is as follows: MRSQ [<SP> <scheme>] <CRLF> <scheme> is a single character. The following are defined: R Recipients first. If this is not implemented, T must be. T Text first. If this is not implemented, R must be. ? Request for preference. This must always be implemented. No argument means a "selection" of none of the schemes (the default). Possible replies are: 200 OK, we'll use specified scheme 215 <scheme> This is the scheme I prefer 501 I understand MRSQ but can't use that scheme 5xx Command unrecognized or unimplemented 16 RFC 772 September 1980 Mail Transfer Protocol There are three aspects of MRSQ. The first is that an MRSQ with no argument must always return a 200 reply and restore the default state of having no scheme selected. Any other reply implies that MRSQ and hence MRCP are not understood or cannot be performed correctly. The second is that the use of "?" as a <scheme> asks the MTP receiver to return a 215 reply in which the receiver specifies a "preferred" scheme. The format of this reply is simple: 215 <SP> <scheme> [<SP> <arbitrary text>] <CRLF> Any other reply (e.g., 4xx or 5xx) implies that MRSQ and MRCP are not implemented, because "?" must always be implemented if MRSQ is. The third important point about MRSQ is that it always has the side effect of resetting all schemes to their initial state. This reset must be done no matter what the reply will be -- 200, 215, or 501. The actions necessary for a reset will be explained when discussing how each scheme actually works. MESSAGE TEXT SPECIFICATION: MAIL Regardless of which scheme (if any) has been selected, a MAIL command with a non-null "TO" argument will behave exactly as before; the MRSQ/MRCP commands have no effect on it. However, a normal MAIL command does have the same side effect as MRSQ; it "resets" the current scheme to its initial state. It is only when the "TO" argument is null (e.g., MAIL FROM:<X@Y> <CRLF>) that the particular scheme chosen is important. Rather than producing an error (as most receivers currently do), the receiver will accept message text for this "null" specification. What it does with it depends on which scheme is in effect, and will be described in the section on Scheme Mechanics. 17 September 1980 RFC 772Mail Transfer Protocol RECIPIENT SPECIFICATION: MRCP In order to specify recipient names (i.e., mailboxes) and receive some acknowledgment (or refusal) for each name, the following command is used: MRCP <SP> TO:<path> <CRLF> Reply for no scheme: 503 No scheme specified yet; use MRSQ Replies for scheme T are identical to those for MAIL. Replies for scheme R (recipients first): 200 OK, name stored 452 Recipient table full, this name not stored 553 Recipient name rejected 4xx Temporary error, try this name again later 5xx Permanent error, report to sender Note that use of this command is an error if no scheme has been selected yet; an MRSQ <scheme> must have been given if MRCP is to be used. SCHEME MECHANICS: MRSQ R (RECIPIENTS-FIRST) In the recipients-first scheme, MRCP is used to specify names which the MTP receiver stores in a list or table. Normally the reply for each MRCP will be either a 200 for acceptance or a 4xx/5xx rejection code. All 5xx codes are permanent rejections (e.g., user not known) which should be reported to the human user, whereas 4xx codes in general connote some temporary error that may be rectified later. None of the 4xx/5xx replies impinge on previous or succeeding MRCP commands, except for 452 which indicates that no further MRCPs will succeed unless a message is sent to the already stored recipients or a reset is done. 18 RFC 772 September 1980 Mail Transfer Protocol Sending message text to stored recipients is done by giving a MAIL command with no "TO" argument; that is, just MAIL <SP> <sender> <CRLF>. Transmission of the message text is exactly the same as for normal MAIL. However, a positive acknowledgment at the end of transmission means the message has been sent to ALL recipients that were remembered with MRCP, and a failure code means that it should be considered to have failed for ALL of these specified recipients. This applies regardless of the actual error code. Regardless of what the reply signifies, all stored recipient names are flushed and forgotten -- in other words, things are reset to their initial state. This purging of the recipient name list must also be done as the reset side effect of any use of MRSQ. A 452 reply to an MRCP can be handled by using MAIL to specify the message for currently stored recipients, and then sending more MRCPs and another MAIL, as many times as necessary. For example, if a receiver only had room for 10 names this would result in a 50-recipient message being sent 5 times, to 10 different recipients each time. If a sender attempts to specify message text (MAIL with no "TO" argument) before any successful MRCPs have been given, this should be treated exactly as a "normal" MAIL with a null recipient would be; some receivers return an error, such as "550 Null recipient". See the example in Appendix A for a mail transfer using MRSQ R. SCHEME MECHANICS: MRSQ T (TEXT-FIRST) In the text-first scheme, MAIL with no "TO" argument is used to specify message text, which the receiver stores away. Succeeding MRCPs are then treated as if they were MAIL commands, except that none of the text transfer manipulations are done; the stored message text is sent to the specified recipient, and a reply code is returned identical to that which an actual MAIL would invoke. (Note that ANY 2xx code indicates success.) The stored message text is not forgotten until the next MAIL or MRSQ, which will either replace it with new text or flush it entirely. Any use of MRSQ will reset this scheme by flushing stored text, as will any use of MAIL with a non-null argument. If an MRCP is seen before any message text has been stored, the sender in effect is trying to send a null message; some receivers might allow this, others would return an error code. 19 September 1980 RFC 772Mail Transfer Protocol See the example in Appendix B for a mail transfer using MRSQ T. WHY TWO SCHEMES ANYWAY? Because neither by itself is optimal for all systems. MRSQ R allows more of a "bulk" mailing because everything is saved up and then mailed simultaneously. This is very useful for systems such as ITS where the MTP-receiver does not itself write mail directly, but hands it on to a central mailer demon of great power. The more information (e.g., recipients) associated with a single "hand-off", the more efficiently mail can be delivered. By contrast, MRSQ T is geared to receiver-MTPs which want to deliver mail directly, in one-by-one incremental fashion. For each given recipient this scheme returns an individual success/failure reply code which may depend on variable mail system factors such as exceeding disk allocation, mailbox access conflicts, and so forth. If these receiver-MTPs tried to emulate MRSQ Rs bulk mailing, they would have to ensure that a success reply to the MAIL indeed meant that it had been delivered to ALL recipients specified -- not just some. NOTES: * Because these commands are not required in the minimum implementation of MTP, one must be prepared to deal with sites which don't recognize either MRSQ or MRCP. "MRSQ" and "MRSQ ?" are explicitly designed as tests to see whether either scheme is implemented. MRCP is not designed as a test, and a failure return of the "unimplemented" variety could be confused with "No scheme selected yet", or even with "Recipient unknown". * There is no way to indicate in a positive response to "MRSQ ?" that the preferred "scheme" for a receiver is that of the default state; i.e., none of the multi-recipient schemes. The rationale is that in this case, it would be pointless to implement MRSQ/MRCP at all, and the response would therefore be negative. 20 RFC 772 September 1980 Mail Transfer Protocol * One reason that the use of MAIL is restricted to null "TO" arguments with this multi-recipient extension is the ambiguity that would result if a non-null "TO" argument were allowed. For example, if MRSQ R was in effect and some MRCPs had been given, and a MAIL FROM:<X@Y> TO:<FOO><CRLF> was done, there would be no way to distinguish a failure reply for mailbox "FOO" from a global failure for all recipients specified. A similar situation exists for MRSQ T; it would not be clear whether the text was stored and the mailbox failed, or vice versa, or both. * "Resets" are done by all MRSQs and "normal" MAILs to avoid confusion and overly complicated implementation. The MRSQ command implies a change or uncertainty of status, and the MAIL command would otherwise have to use some independent mechanisms to avoid clobbering the data bases (e.g., message text storage area) used by the T/R schemes. However, once a scheme is selected, it remains "in effect" just as an FTP "TYPE A" remains selected. The recommended way for doing a reset, without changing the current selection, is with "MRSQ ?". Remember that "MRSQ" alone reverts to the no-scheme state. * It is permissible to intersperse other MTP commands among the MRSQ/MRCP/MAIL sequences. 21 September 1980 RFC 772Mail Transfer Protocol DECLARATIVE SPECIFICATIONS MINIMUM IMPLEMENTATION In order to make MTP workable without needless error messages, the following minimum implementation is required for all receivers: COMMANDS -- QUIT MAIL NOOP In terms of FTP, the values of the transfer parameters must be: TYPE -- ASCII MODE -- STREAM STRU -- FILE-STRUCTURE All hosts must use the above values for mail transfer. CONNECTIONS The receiver-MTP shall "listen" on Port L. The sender-MTP shall initiate the TCP/NCP control connection. The control connection consists of a full-duplex connection under TCP; it is two simplex connections under NCP. Receiver- and sender- MTPs should follow the conventions of the TELNET Protocol as specified in the ARPA Internet Protocol Handbook. Receivers are under no obligation to provide for editing of command lines and may specify that it be done in the sender host. The control connection shall be closed by the receiver at the sender's request after all transfers and replies are completed. SEQUENCING OF COMMANDS AND REPLIES The communication between the sender and receiver is intended to be an alternating dialogue. As such, the sender issues an MTP command and the receiver responds with a prompt primary reply. The sender should wait for this initial primary success or failure response before sending further commands. Certain commands require a second reply for which the sender should also wait. These replies may, for example, report on the progress or completion of mail transfer. They are secondary replies to mail transfer commands. One important group of informational replies is the connection 22 RFC 772 September 1980 Mail Transfer Protocol greetings. Under normal circumstances, a receiver will send a 220 reply, "awaiting input", when the connection is completed. The sender should wait for this greeting message before sending any commands. If the receiver is unable to accept input right away, it should send a 120 "expected delay" reply immediately and a 220 reply when ready. The sender will then know not to hang up if there is a delay. Note: all the greeting type replies have the official name of the server host as the first word following the reply code. The table below lists alternative success and failure replies for each command. These must be strictly adhered to; a receiver may substitute text in the replies, but the meaning and action implied by the code numbers and by the specific command reply sequence cannot be altered. COMMAND-REPLY SEQUENCES In this section, the command-reply sequence is presented. Each command is listed with its possible replies; command groups are listed together. Preliminary replies are listed first (with their succeeding replies indented under them), then positive and negative completion, and finally intermediary replies with the remaining commands from the sequence following. The 421 reply (service not available, closing control connection) may be given at any point if the MTP-receiver knows it must shut down. This listing forms the basis for the state diagrams, which will be presented separately. CONNECTION ESTABLISHMENT 120 220 220 421 MAIL ACTION COMMANDS MAIL 151, 152 354 250 451, 552 354 250 451, 552 450, 550, 452, 553 500, 501, 502, 421 23 September 1980 RFC 772Mail Transfer Protocol MRSQ 200, 215 500, 501, 502, 421 MRCP 151, 152 200 200 450, 550, 452, 553 500, 501, 502, 503, 421
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -