📄 rfc959.txt
字号:
RFC 959 October 1985File Transfer Protocol 3.4.3. COMPRESSED MODE There are three kinds of information to be sent: regular data, sent in a byte string; compressed data, consisting of replications or filler; and control information, sent in a two-byte escape sequence. If n>0 bytes (up to 127) of regular data are sent, these n bytes are preceded by a byte with the left-most bit set to 0 and the right-most 7 bits containing the number n. Byte string: 1 7 8 8 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ |0| n | | d(1) | ... | d(n) | +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ ^ ^ |---n bytes---| of data String of n data bytes d(1),..., d(n) Count n must be positive. To compress a string of n replications of the data byte d, the following 2 bytes are sent: Replicated Byte: 2 6 8 +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ |1 0| n | | d | +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ A string of n filler bytes can be compressed into a single byte, where the filler byte varies with the representation type. If the type is ASCII or EBCDIC the filler byte is <SP> (Space, ASCII code 32, EBCDIC code 64). If the type is Image or Local byte the filler is a zero byte. Filler String: 2 6 +-+-+-+-+-+-+-+-+ |1 1| n | +-+-+-+-+-+-+-+-+ The escape sequence is a double byte, the first of which is thePostel & Reynolds [Page 23] RFC 959 October 1985File Transfer Protocol escape byte (all zeros) and the second of which contains descriptor codes as defined in Block mode. The descriptor codes have the same meaning as in Block mode and apply to the succeeding string of bytes. Compressed mode is useful for obtaining increased bandwidth on very large network transmissions at a little extra CPU cost. It can be most effectively used to reduce the size of printer files such as those generated by RJE hosts. 3.5. ERROR RECOVERY AND RESTART There is no provision for detecting bits lost or scrambled in data transfer; this level of error control is handled by the TCP. However, a restart procedure is provided to protect users from gross system failures (including failures of a host, an FTP-process, or the underlying network). The restart procedure is defined only for the block and compressed modes of data transfer. It requires the sender of data to insert a special marker code in the data stream with some marker information. The marker information has meaning only to the sender, but must consist of printable characters in the default or negotiated language of the control connection (ASCII or EBCDIC). The marker could represent a bit-count, a record-count, or any other information by which a system may identify a data checkpoint. The receiver of data, if it implements the restart procedure, would then mark the corresponding position of this marker in the receiving system, and return this information to the user. In the event of a system failure, the user can restart the data transfer by identifying the marker point with the FTP restart procedure. The following example illustrates the use of the restart procedure. The sender of the data inserts an appropriate marker block in the data stream at a convenient point. The receiving host marks the corresponding data point in its file system and conveys the last known sender and receiver marker information to the user, either directly or over the control connection in a 110 reply (depending on who is the sender). In the event of a system failure, the user or controller process restarts the server at the last server marker by sending a restart command with server's marker code as its argument. The restart command is transmitted over the controlPostel & Reynolds [Page 24] RFC 959 October 1985File Transfer Protocol connection and is immediately followed by the command (such as RETR, STOR or LIST) which was being executed when the system failure occurred.4. FILE TRANSFER FUNCTIONS The communication channel from the user-PI to the server-PI is established as a TCP connection from the user to the standard server port. The user protocol interpreter is responsible for sending FTP commands and interpreting the replies received; the server-PI interprets commands, sends replies and directs its DTP to set up the data connection and transfer the data. If the second party to the data transfer (the passive transfer process) is the user-DTP, then it is governed through the internal protocol of the user-FTP host; if it is a second server-DTP, then it is governed by its PI on command from the user-PI. The FTP replies are discussed in the next section. In the description of a few of the commands in this section, it is helpful to be explicit about the possible replies. 4.1. FTP COMMANDS 4.1.1. ACCESS CONTROL COMMANDS The following commands specify access control identifiers (command codes are shown in parentheses). USER NAME (USER) The argument field is a Telnet string identifying the user. The user identification is that which is required by the server for access to its file system. This command will normally be the first command transmitted by the user after the control connections are made (some servers may require this). Additional identification information in the form of a password and/or an account command may also be required by some servers. Servers may allow a new USER command to be entered at any point in order to change the access control and/or accounting information. This has the effect of flushing any user, password, and account information already supplied and beginning the login sequence again. All transfer parameters are unchanged and any file transfer in progress is completed under the old access control parameters.Postel & Reynolds [Page 25] RFC 959 October 1985File Transfer Protocol PASSWORD (PASS) The argument field is a Telnet string specifying the user's password. This command must be immediately preceded by the user name command, and, for some sites, completes the user's identification for access control. Since password information is quite sensitive, it is desirable in general to "mask" it or suppress typeout. It appears that the server has no foolproof way to achieve this. It is therefore the responsibility of the user-FTP process to hide the sensitive password information. ACCOUNT (ACCT) The argument field is a Telnet string identifying the user's account. The command is not necessarily related to the USER command, as some sites may require an account for login and others only for specific access, such as storing files. In the latter case the command may arrive at any time. There are reply codes to differentiate these cases for the automation: when account information is required for login, the response to a successful PASSword command is reply code 332. On the other hand, if account information is NOT required for login, the reply to a successful PASSword command is 230; and if the account information is needed for a command issued later in the dialogue, the server should return a 332 or 532 reply depending on whether it stores (pending receipt of the ACCounT command) or discards the command, respectively. CHANGE WORKING DIRECTORY (CWD) This command allows the user to work with a different directory or dataset for file storage or retrieval without altering his login or accounting information. Transfer parameters are similarly unchanged. The argument is a pathname specifying a directory or other system dependent file group designator. CHANGE TO PARENT DIRECTORY (CDUP) This command is a special case of CWD, and is included to simplify the implementation of programs for transferring directory trees between operating systems having differentPostel & Reynolds [Page 26] RFC 959 October 1985File Transfer Protocol syntaxes for naming the parent directory. The reply codes shall be identical to the reply codes of CWD. See Appendix II for further details. STRUCTURE MOUNT (SMNT) This command allows the user to mount a different file system data structure without altering his login or accounting information. Transfer parameters are similarly unchanged. The argument is a pathname specifying a directory or other system dependent file group designator. REINITIALIZE (REIN) This command terminates a USER, flushing all I/O and account information, except to allow any transfer in progress to be completed. All parameters are reset to the default settings and the control connection is left open. This is identical to the state in which a user finds himself immediately after the control connection is opened. A USER command may be expected to follow. LOGOUT (QUIT) This command terminates a USER and if file transfer is not in progress, the server closes the control connection. If file transfer is in progress, the connection will remain open for result response and the server will then close it. If the user-process is transferring files for several USERs but does not wish to close and then reopen connections for each, then the REIN command should be used instead of QUIT. An unexpected close on the control connection will cause the server to take the effective action of an abort (ABOR) and a logout (QUIT). 4.1.2. TRANSFER PARAMETER COMMANDS All data transfer parameters have default values, and the commands specifying data transfer parameters are required only if the default parameter values are to be changed. The default value is the last specified value, or if no value has been specified, the standard default value is as stated here. This implies that the server must "remember" the applicable default values. The commands may be in any order except that they must precede the FTP service request. The following commands specify data transfer parameters:Postel & Reynolds [Page 27] RFC 959 October 1985File Transfer Protocol DATA PORT (PORT) The argument is a HOST-PORT specification for the data port to be used in data connection. There are defaults for both the user and server data ports, and under normal circumstances this command and its reply are not needed. If this command is used, the argument is the concatenation of a 32-bit internet host address and a 16-bit TCP port address. This address information is broken into 8-bit fields and the value of each field is transmitted as a decimal number (in character string representation). The fields are separated by commas. A port command would be: PORT h1,h2,h3,h4,p1,p2 where h1 is the high order 8 bits of the internet host address. PASSIVE (PASV) This command requests the server-DTP to "listen" on a data port (which is not its default data port) and t
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -