📄 rfc957.txt
字号:
Mills [Page 15]RFC 957 September 1985Experiments in Network Clock Synchronization Given the considerations above, it would seem feasable for hosts to synchronize logical clocks to a particular power grid, but only if corrections were transmitted often enough to maintain the required accuracy and these corrections were delivered to the hosts essentially at the same time. Assuming a worst-case 400-ppm slewing rate and one minute between correction broadcasts, for example, it would in principle be possible to achieve accuracies in the 20-ms range. There are a number of prediction and smoothing techniques that could be used to inhance accuracy and reduce the overhead of the broadcasts. Host DCN3, which uses a line-frequency clock interface, was unlocked during the experiment period so that the offset between the PEPCO clock, which is locked to the eastern power grid, could be measured with respect to the reference host DCN1. Host DCN7, which uses the same interface, remained locked to DCN1. In spite of the previously noted instability of the power grid, DCN7 remained typically within 30 ms of DCN1 and only infrequently exceeded 100 ms in the vicinity of large changes in system load that occured near 0800 and 1700 local time. Over the seven-day period from 2 July through 8 July the mean offset was less than a millisecond with standard deviation about 24 ms, while the maximum was 79 ms and minimum -116 ms. Experiments were also carried out using ICMP Timestamp messages with hosts known to use line-frequency clock interfaces in California, Norway and Germany. The results indicated that the western power grid is rather more stable than the eastern grid and that the overseas grids are rather less stable. In the Oslo, Munich and Stuttgart areas, for example, the diurnal variation was observed to exceed ten seconds.4.3.2. On Clocks Synchronized via Network Links As mentioned previously, all network links used to synchronize the clocks were carrying normal data traffic throughout the experiment period. It would therefore be of interest to investigate how this affects the accuracy of the individual clocks. Table 2 summarizes the mean and standard deviation of the measured offsets between the WWVB radio clock and various hosts as shown in Figure 2. Measurements were made over the 24-hour period for each of several days during the experimental period. Each entry shown in Table 2 includes the mean of the statistic over these days, together with the maximum variation.Mills [Page 16]RFC 957 September 1985Experiments in Network Clock Synchronization Host Mean Deviation Link Type and Speed ----------------------------------------------------------- DCN1 .08/.02 0.53/.02 WWVB radio clock (1200 bps) DCN5 -13.61/.04 1.1/0.4 Ethernet (10 Mbps) DCN6 0.27/.18 5.8/1.0 DDCMP (4800 bps) FORD1 38.5/1.6 2.5/0.5 DDCMP (9600 bps) Table 2. Link Measurements The departure of the mean shown in Table 2 from zero is related to the drift of the crystal oscillator used in the hardware interface (see Table 1). As described previously, FORD1 was synchonized to the GOES radio clock with neglible offset, so that the mean and standard deviation shown can be accurately interpreted to apply to the GOES radio clock as well. The results show that the uncertaincies inherent in the synchronization algorithm and protocols is in the same order as that of the reference clocks and is related to the speed of the links connected the reference hosts to the other hosts in the network. Further discussion on the FORD1/GOES statistics can be found in the next section. Further insight into the error process can be seen in Table 3, which shows the first derivative of delay. Host Dev Max Min Error ------------------------------------- DCN3 2.3 12 -17 10 DCN5 1.5 45 -45 5 DCN6 9 94 -54 40 DCN7 1.4 6 -7 5 FORD1 3.4 68 -51 15 Table 3. First Derivative of Delay The mean and standard deviation of delay were computed for all hosts on a typical day during the experimental period. In all cases the magnitude of the mean was less than one. The standard deviation, maximum and minimum for each link is summarized by host in Table 3. A common characteristic of the distribution in most cases was that only a handful of samples approached the maximum or minimum extrema, while the vast majority of samples were much less than this. The "Error" colum in Table 3 indicates the magnitude of the estimated error when these extrema are discarded.Mills [Page 17]RFC 957 September 1985Experiments in Network Clock Synchronization A very interesting feature of the observations was the unexpectedly low standard deviation of DCN3, which was locked to the power grid and thus would be expected to show wide variations. Upon analysis, this turned out to be a natural consequence of the fact that the Hello messages are generated as the result of interrupts based on the line frequency when the local clock had just been incremented by 1/60th of a second. The synchronizing protocol and implementation were carefully constructed to minimize the loss of accuracy due to sharing of the network links between data and control traffic, as long as sufficient resources (in particular, packet buffers) are available. Since the various network links shown in Figure 2 operate over a wide range of rates, it is possible that undisciplined bursts of traffic can swamp a host or gateway and precipitate a condition of buffer starvation. While most hosts using paths through the experimental configuration were relatively well-disciplined in their packetization and retransmission policies, some Unix 4.2bsd systems were notorious exceptions. On occasion these hosts were observed sending floods of packets, with only a small amount of data per packet, together with excessive retransmissions. As expected, this caused massive congestion, unpredictable link delays and occasional clock synchronizing errors. The synchronizing algorithms described above successfully cope with almost all instances of congestion as described, since delay-induced errors tend to be isolated, while inherent anti-spike and smoothing properties of the synchronizing algorithm help to preserve accuracies in any case. Only one case was found during the ten-day experiment period where a host was mistakenly synchronized outside the linear-tracking window due to congestion. Even in this case the host was quickly resynchronized to the correct time when the congestion was cleared.4.3.3. On the Accuracy of Radio Clocks One of the more potent motivations for the experiments was to assess the accuracy of the various radio clocks and to determine whether the WWV radio clock was an appropriate replacement for the expensive WWVB or GOES clocks. A secondary consideration, discussed further in the next section, was how the various clocks handled disruptions due to power interruptions, leap seconds and so forth.Mills [Page 18]RFC 957 September 1985Experiments in Network Clock Synchronization4.3.3.1. The Spectracom 8170 WWVB Radio Clock As the result of several years of experience with the WWVB radio clock, which is manufactured by Spectracom Corporation as Model 8170, it was chosen as the reference for comparison for the GOES and WWV radio clocks. Washington, DC, is near the 100-microvolt/meter countour of the WWVB transmitter at Boulder, CO, well in excess of the 25-microvolt/meter sensitivity of the receiver. The antenna is located in a favorable location on the roof of a four-storey building in an urban area. Using the data from the instruction manual, the propagation delay for the path from Boulder to Washington is about 8 ms, while the intrinsic receiver delay is about 17 ms. The clock is read via a 1200-bps asynchronous line, which introduces an additional delay of about 7 ms between the on-time transition of the first character and the interrupt at the middle of the first stop bit. Thus, the WWVB radio clock indications should be late by 8 + 17 + 7 = 32 ms relative to NBS standard time. While it is possible to include this delay directly in the clock indication, this was not done in the experiments. In order to account for this, 32 ms should be subtracted from all indications derived from this clock. The uncertaincy in the indication due to all causes is estimated to be a couple of milliseconds.4.3.3.2. The True Time 468-DC GOES Radio Clock The GOES radio clock is manufactured by True Time Division of Kinemetrics, Incorporated, as Model 468-DC. It uses the Geosynchronous Orbiting Environmental Satellite (GOES), which includes an NBS-derived clock channel. Early in the experiment period there was some ambiguity as to the exact longitude of the satellite and also whether the antenna was correctly positioned. This was reflected in the rather low quality-of-signal indications and occasional signal loss reported by the clock and also its apparent offset compared with the other radio clocks. Table 4 shows a summary of offset statistics for the GOES radio clock by day (all day numbers refer to July, 1985).Mills [Page 19]RFC 957 September 1985Experiments in Network Clock Synchronization Day Mean Dev Max Min ------------------------------------ 2 31.6 9.4 53 -76 3 19.8 22.1 53 -64 4 42.8 17.1 >150 19 5 39.3 2.2 54 -45 6 37.8 2.7 53 19 7 62.2 13.0 89 22 8 38.2 2.8 90 -7 Table 4. GOES Radio Clock Offsets On all days except days 5, 6 and 8 long periods of poor-quality signal reception were evident. Since the antenna and satellite configuration are known to be marginal, these conditions are not considered representative of the capabilities of the clock. When the data from these days are discarded, the mean offset is 38.4 ms with standard deviation in the range 2.2 to 2.8. The maximum offset is 90 ms and the minimum is -45 ms; however, only a very small number of samples are this large - most excursions are limited to 10 ms of the mean. In order to compute the discrepancy between the GOES and WWVB clocks, it is necessary to subtract the WWVB clock delay from the mean offsets computed above. Thus, the GOES clock indications are 38.4 - 32 = 6.4 ms late with respect to the WWVB clock indications. which is probably within the bounds of experiment error.4.3.3.3. The Heath GC-1000 WWV Radio Clock The WWV radio clock is manufactured by Heath Company as Model GC-1000. It uses a three-channel scanning WWV/WWVH receiver on 5, 10 and 15 MHz together with a microprocessor-based controller. The receiver is connected to an 80-meter dipole up about 15 meters and located in a quiet suburban location. Signal reception from the Fort Collins transmitters was average to poor during the experiment period due to low sunspot activity together with a moderate level of geomagnetic disturbances, but was best during periods of darkness over the path. The clock locked at one of the frequencies for varying periods up to an hour from two to several times a day. The propagation delay on the path between Fort Collins and Washington is estimated at about 10 ms and can vary up to a couple of milliseconds over the day and night. While it is possible to include this delay in the clock indications, which are already corrected for
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -