📄 rfc873.txt
字号:
--------- < INC-PROJECT, MAP-ILLUSION.NLS.8, >, 12-Aug-83 11:44 AMW ;;;; RFC 873 September 1982 M82-49 THE ILLUSION OF VENDOR SUPPORT M.A. PADLIPSKY THE MITRE CORPORATION Bedford, Massachusetts ABSTRACT The sometimes-held position that "vendor supplied" intercomputer networking protocols based upon the International Standards Organization's Reference Model for Open System Interconnection are worth waiting for, in particular in preference to protocols based upon the ARPANET Reference Model (ARM), is shown to be fallacious. The paper is a companion piece to M82-47, M82-48, M82-50, and M82-51. i THE ILLUSION OF VENDOR SUPPORT M. A. Padlipsky Introduction Even one or two members of the DoD Protocol Standards Technical Panel join with many others (including, apparently, some members of the DoD Protocol Standards Steering Group, and clearly, somebody at the GAO) in expressing a desire to "go with vendor-supported intercomputer networking protocols instead of using our own." The author's view of the implications of this desire should be clear from the title of this paper. What evidence, then, is there to so stigmatize what is clearly a well-meant desire to save the Government money? Scope First, we must consider what is meant by "vendor-supported protocols." It can't be just X.25, because that only gets you through the network layer whether you're appealing to the International Standards Organization's widely-publicized Reference Model for Open System Interconnection (ISORM) or to the unfortunately rather tacit reference model (ARM) to which the ARPANET protocols (e.g., TCP, IP, Telnet, FTP) were designed. It also can't be just X.25 and X.28/X.29 (even with X.75 tossed in to handle "internetting" and X.121 for addressing) because: 1. They don't serve as a protocol suite for resource sharing (also known as OSI), but rather only allow for remote access [1]. 2. They (coming as they do from the Consultative Committee on International Telegraphy and Telephony--and including one or two other protocols, in reality) don't even constitute the full protocol suite being worked on by the U. S. National Bureau of Standards, much less the somewhat different suite being evolved by ISO. So it must be a suite from NBS or ISO, and for present purposes we needn't differentiate between them as their Reference Models are close enough to be shorthanded as the ISORM. Timeliness Realizing that we're being asked to consider an ISORM-related protocol suite as what the vendors are expected to support has one immediate consequence which in some sense can be considered to dominate all of the other points to be raised: That is, the DoD procurement process entails quite long lead times. Yet the ISORM suite is by no means complete at present. Without prejudice to its 1 RFC 873 September 1982 merits or demerits, only X.25 (as levels 1-3, and with some ambiguity as to what level X.75 belongs at) is as yet firmly in the ISORM suite (which it will be convenient to refer to as "ISORMS"), and there is even some doubt as to how firmly they're there. (E.g., a British observer at a recent PSTP meeting assured the author that "We in the U.K. don't believe X.25 is officially part of the ISORM.") There are proposals which have been circulating for some time at Level 4, and less far along through the international (or even national, remembering NBS) standardization process, ones at Level(s) 5-7. It must be noted that: 1. These are by and large "paper protocols" (that is, they have not been subjected to the test of actual use). 2. Even ISO and NBS's warmest supporters acknowledge that the standardization process "takes years." So if the DoD is to avoid buying what might turn out to be a series of pigs in a series of pokes, it can't wait for the ISORMS. On the other side of the coin, the DoD is letting intercomputer networking contracts right now. And, right now, there does exist a suite of protocols designed to the ARPANET Reference Model (ARMS, with no pun intended). Implementations of the ARMS already exist for a number of operating systems already in use in the DoD. Now, it is not argued that the ARMS protocols come "for free" in upcoming acquisitions (contractors fuss about the style of the available specifications, system maintainers fear incursions of non-vendor supplied code into operating systems, and so on), but it is unarguable that the ARMS can be procured significantly more rapidly than the ISORMS. (It is also unarguable that those who speak of their unwillingness to see the DoD "develop new protocols rather than employ international standards" haven't done their homework; we're not talking about new protocols in the ARMS, we're talking about protocols that have been in real use for years.) Quality of Support The timeliness argument can lead to a counterargument that the ISORMS is "worth waiting for," though, so we're not done yet. Let's look further at what "vendor support" means. Clearly, the proponents of the position expect that vendors' implementations of protocols will be in conformance with the Standards for those protocols. Given the nature of these specifications, though, what can we infer about the quality of support we can expect from the vendors? There are two problem areas immediately apparent: ambiguities and options. Let's take ambiguities first. The following are some of the questions raised by knowledgable observers about the present state of the ISORMS: 2 RFC 873 September 1982 1. Can an X.25 comm subnet offer alternate routing? (The answer depends on whether "DCE's" are expected to follow X.25 between themselves. The situation is further complicated by the fact that some ISORM advocates don't even include the Data Communication Elements in their depictions of the Model; this leads to the metaphorical question* "Are there parking garages between the highrises?") If you can conform to X.25 and not offer alternate routing--which certainly appears to be consistent with the spec, and might even be construed as required by it--the DoD's inherent interest in "survivability" cannot be served by you. 2. Can an X.75 internet offer alternate gatewaying? (The answer is almost surely no, unless the X.75 spec is re-written.) If not, again the DoD's interest is not served. 3. Does "Expedited Data" have semantics with regard to the L4-L5/L7 interface? (Not as I read the spec, by the way.) If not, the ISORMS lacks the ability to convey an "Out-of-Band-Signal" to an Application protocol. (This leads to the metaphorical question, "What good is an SST if there's nobody on duty at the Customs Shed?") 4. Must all layers be traversed on each transmission? (There are rumors of a new ISORM "null-layer" concept; it's not in the last version I looked at, however, and apparently the answer is yes at present.) If so, the DoD's inherent interest in efficiency/timeliness cannot be served. (This leads to the metaphorical question, "Are there elevators inside the highrises, or just staircases?") 5. Can an implementation be in conformance with the ISORM and yet flout the prescription that "N-entities must communicate with each other by means of N-1 entities"? (Not as I read the spec.) If not, again implementations must be inefficient, because the prescription represents an inappropriate legislation of implementation detail which can only lead to inefficient implementations. _______________ * This and other metaphorical questions are dealt with at greater length in reference [2]. 3 RFC 873 September 1982 6. Is each layer one protocol or many? (The point quoted in 5 would seem to imply the latter, but many ISORM advocates claim it's the former except for L1 and L7.)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -