📄 rfc982.txt
字号:
The length of the DSP can be determined since the total address length is known, and the IDP has fixed length for any given AFI value. The length of the DSP is between 6 and 12 octets. The first three octets identify an organization which has been designated as an addressing authority. This authority is responsible for assigning values to the remainder of the DSP. The length of the subnetwork identification is fixed at two octets (16 bits). The assignment of subnetwork identifications is under the control of the administering authority for the private domain, except that the value with both octets hex "FF" is reserved to indicate that the subnetwork is not explicitly identified. The length of the subnetwork address may be up to six octets, and is determined by the DSP length minus three octets. For subnetworks using DIS 8802 MAC addressing, this field consists of the octets of the MAC address in the same order as they are defined in DIS 8802. The NSAP selector occupies a single octet.ANSI [Page 6]RFC 982 April 1986ANSI Guidelines Description of Decimal syntax The length of the DSP can be determined since the total address length is known, and the IDP has fixed length for any given AFI value. The length of the DSP is between 14 and 29 decimal digits. The first six digits identify an organization which as been designated as an addressing authority. This authority is responsible for assigning values to the remainder of the DSP. The length of the subnetwork identification is fixed at five decimal digits. The assignment of subnetwork identifications is under the control of the administering authority for the private domain, except that a value of "99999" is reserved to indicate that the subnetwork is not explicitly identified. The length of the subnetwork address may be up to fifteen decimal digits, and is determined by the DSP length minus eight decimal digits. The NSAP selector occupies three decimal digits. 7.3 F.69 DSP format guidelines Description of Binary syntax The length of the DSP can be determined since the total address length is known, and the IDP has fixed length for any given AFI value. If DSP is present, a DSP of 2 or less octets is an NSAP selector. A DSP between 3 and 9 octets is interpreted in the manner described below. Interpretation of a DSP greater than 9 octets in length is not specified in this report. The length of the subnetwork identification is fixed at two octets (16 bits). The assignment of subnetwork identifications is under the control of the administering authority for the private domain, except that the value with both octets hex "FF" is reserved to indicate that the subnetwork is not explicitly identified. The length of the subnetwork address may be up to six octets, and is determined by the DSP length minus three octets. For subnetworks using DIS 8802 MAC addressing, this field consists of the octets of the MAC address in the same order as they are defined in DIS 8802.ANSI [Page 7]RFC 982 April 1986ANSI Guidelines The NSAP selector occupies a single octet. Description of Decimal syntax The length of the DSP can be determined since the total address length is known, and the IDP has fixed length for any given AFI value. If DSP is present, a DSP of 8 or less decimal digits is an NSAP selector. A DSP between 8 and 23 decimal digits is interpreted in the manner described below. Interpretation of a DSP greater than 23 decimal digits in length is not specified in this report. The length of the subnetwork identification is fixed at five decimal digits. The assignment of subnetwork identifications is under the control of the administering authority for the private domain, except that a value of "99999" is reserved to indicate that the subnetwork is not explicitly identified. The length of the subnetwork address may be up to fifteen decimal digits, and is determined by the DSP length minute eight decimal digits. The NSAP selector occupies three decimal digits. 7.4 E.163 DSP format guidelines Description of Binary syntax The length of the DSP can be determined since the total address length is known, and the IDP has fixed length for any given AFI value. If DSP is present, a DSP of 2 or less octets is an NSAP selector. A DSP between 3 and 9 octets is interpreted in the manner described below. Interpretation of a DSP greater than 9 octets in length is not specified in this report. The length of the subnetwork identification is fixed at two octets (16 bits). The assignment of subnetwork identifications is under the control of the administering authority for the private domain, except that the value with both octets hex "FF" is reserved to indicate that the subnetwork is not explicitly identified. The length of the subnetwork address may be up to six octets, and is determined by the DSP length minus three octets. For subnetworks using DIS 8802 MAC addressing, this field consists of the octets of the MAC address in the same order as they are defined in DIS 8802.ANSI [Page 8]RFC 982 April 1986ANSI Guidelines The NSAP selector occupies a single octet. Description of Decimal syntax The length of the DSP can be determined since the total address length is known, and the IDP has fixed length for any given AFI value. If DSP is present, a DSP of 8 or less decimal digits is an NSAP selector. A DSP between 8 and 23 decimal digits is interpreted in the manner described below. Interpretation of a DSP greater than 23 decimal digits in length is not specified in this report. The length of the subnetwork identification is fixed at five decimal digits. The assignment of subnetwork identifications is under the control of the administering authority for the private domain, except that a value of "99999" is reserved to indicate that the subnetwork is not explicitly identified. The length of the subnetwork address may be up to fifteen decimal digits, and is determined by the DSP length minus eight decimal digits. The NSAP selector occupies three decimal digits. 7.5 E.164 DSP format guidelines Description of Binary syntax The length of the DSP can be determined since the total address length is known, and the IDP has fixed length for any given AFI value. If DSP is present, a DSP of 2 or less octets is an NSAP selector. A DSP between 3 and 9 octets is interpreted in the manner described below. Interpretation of a DSP greater than 9 octets in length is not specified in this report. The length of the subnetwork identification is fixed at two octets (16 bits). The assignment of subnetwork identifications is under the control of the administering authority for the private domain, except that the value with both octets hex "FF" is reserved to indicate that the subnetwork is not explicitly identified. The length of the subnetwork address may be up to six octets, and is determined by the DSP length minus three octets. For subnetworks using DIS 8802 MAC addressing, this field consists of the octets of the MAC address in the same order as they are defined in DIS 8802.ANSI [Page 9]RFC 982 April 1986ANSI Guidelines The NSAP selector occupies a single octet. Description of Decimal syntax The length of the DSP can be determined since the total address length is known, and the IDP has fixed length for any given AFI value. If DSP is present, a DSP of 8 or less decimal digits is an NSAP selector. A DSP between 8 and 23 decimal digits is interpreted in the manner described below. Interpretation of a DSP greater than 23 decimal digits in length is not specified in this report. The length of the subnetwork identification is fixed at five decimal digits. The assignment of subnetwork identifications is under the control of the administering authority for the private domain, except that a value of "99999" is reserved to indicate that the subnetwork is not explicitly identified. The length of the subnetwork address may be up to fifteen decimal digits, and is determined by the DSP length minus eight decimal digits. The NSAP selector occupies three decimal digits. 7.6 ISO 6523-ICD DSP format guidelines Description of Binary syntax The length of the DSP can be determined since the total address length is known, and the IDP has fixed length for any given AFI value. The length of the DSP is between 5 and 11 octets. The first two octets identify an organization which has been designated as an addressing authority. This authority is responsible for assigning values to the remainder of the DSP. The length of the subnetwork identification is fixed at two octets (16 bits). The assignment of subnetwork identifications is under the control of the administering authority for the private domain, except that the value with both octets hex "FF" is reserved to indicate that the subnetwork is not explicitly identified. The length of the subnetwork address may be up to six octets, and is determined by the DSP length minus three octets. ForANSI [Page 10]RFC 982 April 1986ANSI Guidelines subnetworks using DIS 8802 MAC addressing, this field consists of the octets of the MAC address in the same order as they are defined in DIS 8802. The NSAP selector occupies a single octet. Description of Decimal syntax The length of the DSP can be determined since the total address length is known, and the IDP has fixed length for any given AFI value. The length of the DSP is between 12 and 27 decimal digits. The first four digits identify an organization which has been designated as an addressing authority. This authority is responsible for assigning values to the remainder of the DSP. The length of the subnetwork identification is fixed at five decimal digits. The assignment of subnetwork identifications is under the control of the administering authority for the private domain, except that a value of "99999" is reserved to indicate that the subnetwork is not explicitly identified. The length of the subnetwork address may be up to fifteen decimal digits, and is determined by the DSP length minus eight decimal digits. The NSAP selector occupies three decimal digits. 7.7 Local DSP format guidelines No recommendations made.ANSI [Page 11]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -