📄 rfc780.txt
字号:
preliminary reply by sending a continue (CONT) or abort (ABRT) command. In the case of the continue, the next reply from the MTP-receiver will be any of the replies expected for the MAIL command, most likely "354 Start mail input, ...". In the case of the abort, the next reply from the MTP-receiver will be "201 Command okay, action aborted". 3.2. SOURCE ROUTING The receiver-path may be a source route of the form "@ONE,@TWO,JOE@THREE", where ONE, TWO, and THREE are hosts. This form is used to emphasize the distinction between an address and a route. At some distant future time it might be necessary to expand the mailbox format to include a region identifier, such as "user@host@region". If this occured the MTP path convention could be expanded to "host@region,host@region,...user@host@region". For example, "ONE@R1,TWO@R2,JOE@THREE@R3". The mailbox is an absolute address, and the route is information about how to get there. The two concepts should not be confused. The elements of the receiver-path are to be moved to the sender-path as the message is relayed from one MTP to another. The sender-path is a reverse source route, that is, a source route to the originator of the message. When an MTP deletes its identifier from the receiver-path and inserts it into the sender-path, it must use the name it is known by in the environment it is sending into, not the environment the mail came from, in case the MTP is known be different names in different environments. When source routing is used the receiver-MTP will receive mail to be relayed to another MTP. The receiver-MTP may accept the task of relaying the mail or reject it in the same way it accepts or reject mail for a local user. It does not use the 151 "User not local" or 152 "User unknown" preliminary replies. Once the receiver-MTP accepts the relaying task it receives the mail text and transforms the command arguments by removing its own identifier from the receiver-path and inserting it in the[Page 6] Sluizer & Postel RFC 780 May 1981 Mail Transfer Protocol beginning of the sender-path. The receiver-MTP then becomes a sender-MTP and establishes a transmission channel to the next MTP in the receiver-path and sends it the mail. If an MTP has accepted the task of relaying the mail and later finds that the receiver-path is incorrect or that the mail cannot be delivered for whatever reason, then it must construct a notification message and send it to the originator of the undeliverable mail as indicated by the sender-path. This notification message must be from the MTP at this host. That is, the sender-path of the notification message itself will be "MTP@<host>", and in the notification message header the From field will be "MTP at <host>". Of course, MTPs should not send notification messages about problems with notification messages.Sluizer & Postel [Page 7] May 1981 RFC 780Mail Transfer Protocol 4. MULTI-RECIPIENT MAIL There are two MTP commands which allow the text of a message to be mailed to several recipients simultaneously; such message transmission is far more efficient than the practice of sending the text again and again for each additional recipient at a host. In one scheme, all recipients are specified first, and then the text is sent. In the other scheme, the order is reversed and the text is sent first, followed by the recipients. The sender-MTP suggests the scheme it would prefer, but receiver-MTP controls which scheme is actually used. To select a particular scheme, the MRSQ command is used; to specify recipients after a scheme is chosen, MRCP commands are given; and to furnish text, the MAIL command is used. Both schemes are necessary because neither by itself is optimal for all systems. MRSQ R allows more of a "bulk" mailing because everything is saved up and then mailed simultaneously. This is very useful for systems such as ITS where the MTP-receiver does not itself write mail directly, but hands it on to a central mailer demon. The more information (e.g., recipients) associated with a single "hand-off", the more efficiently mail can be delivered. By contrast, MRSQ T is geared to receiver-MTPs which want to deliver mail directly, in one-by-one incremental fashion. For each given recipient this scheme returns an individual success/failure reply code which may depend on variable mail system factors such as exceeding disk allocation, mailbox access conflicts, and so forth. If these receiver-MTPs tried to emulate MRSQ Rs bulk mailing, they would have to ensure that a success reply to the MAIL indeed meant that it had been delivered to ALL recipients specified -- not just some. 4.1. SCHEME SELECTION: MRSQ MRSQ is the means by which a sender-MTP can test for MRSQ/MRCP implementation, select a particular scheme, reset its state, and even do some rudimentary negotiation. Its format is as follows: MRSQ [<SP> <scheme>] <CRLF> <scheme> is a single character. The following are defined: R Recipients first. If this is not implemented, T must be. T Text first. If this is not implemented, R must be. ? Request for preference. This must always be implemented.[Page 8] Sluizer & Postel RFC 780 May 1981 Mail Transfer Protocol No argument means a "selection" of none of the schemes (the default). Possible replies are: 200 OK, use the specified scheme 215 <scheme> This is the scheme I prefer 504 I understand MRSQ but can't use that scheme 5xx Command unrecognized or unimplemented There are three aspects of MRSQ. The first is that an MRSQ with no argument must always return a 200 reply and restore the default state of having no scheme selected. Any other reply implies that MRSQ and hence MRCP are not understood or cannot be performed correctly. The second is that the use of "?" as a <scheme> asks the MTP receiver to return a 215 reply in which the receiver specifies a "preferred" scheme. The format of this reply is simple: 215 <SP> <scheme> [<SP> <string>] <CRLF> Any other reply (e.g., 4xx or 5xx) implies that MRSQ and MRCP are not implemented, because "?" must always be implemented if MRSQ is. The third important point about MRSQ is that it always has the side effect of reseting all schemes to their initial state. This reset must be done no matter what the reply will be -- 200, 215, or 504. The actions necessary for a reset will be explained when discussing how each scheme actually works. Note that the receiver gets to choose which scheme is used. The sender must be prepared to do either. 4.2. MESSAGE TEXT SPECIFICATION: MAIL Regardless of which scheme (if any) has been selected, a MAIL command with a non-null receiver-path argument will behave exactly as before; the MRSQ/MRCP commands have no effect on it. However, a normal MAIL command does have the same side effect as MRSQ; it "resets" all schemes to their initial state. It is only when the receiver-path argument is null that the particular scheme chosen is important. MAIL FROM:<sender-path> <CRLF>Sluizer & Postel [Page 9] May 1981 RFC 780Mail Transfer Protocol Rather than producing an error, the receiver will accept message text for this "null" recipient specification. What it does with it depends on which scheme is in effect, and will be described in the section on Scheme Mechanics. 4.3. RECIPIENT SPECIFICATION: MRCP In order to specify recipient names (i.e., mailboxes) and receive some acknowledgment (or refusal) for each name, the following command is used: MRCP <SP> TO:<receiver-path> <CRLF> Reply for no scheme: 503 No scheme specified yet; use MRSQ Replies for scheme T are identical to those for MAIL. Replies for scheme R (recipients first): 200 OK, name stored 452 Recipient table full, this name not stored 550 Recipient name rejected 4xx Temporary error, try this name again later 5xx Permanent error, report to sender Note that use of this command is an error if no scheme has been selected yet; an MRSQ <scheme> must have been given if MRCP is to be used. 4.4. SCHEME MECHANICS: MRSQ R (RECIPIENTS-FIRST) In the recipients-first scheme, MRCP is used to specify names which the MTP receiver stores in a list or table. Normally the reply for each MRCP will be either a 200 for acceptance or a 4xx/5xx rejection code. All 5xx codes are permanent rejections (e.g., user not known) which should be reported to the human user, whereas 4xx codes in general connote some temporary error that may be rectified later. None of the 4xx/5xx replies impinge on previous or succeeding MRCP commands, except for 452 which indicates that no further MRCPs will succeed unless a message is sent to the already stored recipients or a reset is done. Sending message text to stored recipients is done by giving a MAIL command with no receiver-path argument; that is, just MAIL <SP> FROM: <sender-path> <CRLF>. Transmission of the message text is exactly the same as for normal MAIL. However, a positive acknowledgment at the end of transmission means the message has been sent to ALL recipients that were remembered with MRCP, and a[Page 10] Sluizer & Postel RFC 780 May 1981 Mail Transfer Protocol failure code means that it should be considered to have failed for ALL of these specified recipients. This applies regardless of the actual error code. Regardless of what the reply signifies, all stored recipient names are flushed and forgotten -- in other words, things are reset to their initial state. This purging of the recipient name list must also be done as the reset side effect of any use of MRSQ (or MAIL with a non-null receiver-path argument). A 452 reply (out of storage space) to an MRCP can be handled by using MAIL to specify the message for currently stored recipients, and then sending more MRCPs and another MAIL, as many times as necessary. For example, if a receiver only had room for 10 names this would result in a 50-recipient message being sent 5 times, to 10 different recipients each time. If a sender attempts to specify message text (MAIL with no receiver-path argument) before any successful MRCPs have been given, this should be treated exactly as a "normal" MAIL with a null recipient would be; some receivers return an error, such as "550 Null recipient". ------------------------------------------------------------- Example of MRSQ R (Recipients First) First the sender must establish that the receiver implements MRSQ. S: MRSQ <CRLF> R: 200 OK, no scheme selected An MRSQ with a null argument always returns a 200 if implemented, selecting the default "scheme", i.e., none of them. If MRSQ were not implemented, a code of 4xx or 5xx would be returned. S: MRSQ R <CRLF> R: 200 OK, using that scheme All is well; now the recipients can be specified. S: MRCP TO:<Foo@Y> <CRLF> R: 200 OKSluizer & Postel [Page 11] May 1981 RFC 780Mail Transfer Protocol S: MRCP TO:<Raboof@Y> <CRLF> R: 550 No such user here S: MRCP TO:<bar@Y> <CRLF> R: 200 OK S: MRCP TO:<@Y,@X,fubar@Z> <CRLF> R: 200 OK Note that the failure of "Raboof" has no effect on the storage of mail for "Foo", "bar" or the mail to be relayed to "fubar@Z" through host "X". Now the message text is furnished, by giving a MAIL command with no receiver-path argument. S: MAIL FROM:<waldo@A><CRLF> R: 354 Start mail input; end with <CRLF>.<CRLF> S: Blah blah blah blah....etc. etc. etc. S: <CRLF>.<CRLF> R: 250 Mail sent The mail text has now been sent to "Foo" and "bar" as well as relayed to "fubar@Z". Example 2 ------------------------------------------------------------- 4.5. SCHEME MECHANICS: MRSQ T (TEXT-FIRST) In the text-first scheme, MAIL with no receiver-path argument is used to specify message text, which the receiver stores away. Succeeding MRCPs are then treated as if they were MAIL commands, except that none of the text transfer manipulations are done; the stored message text is sent to the specified recipient, and a reply code is returned identical to that which an actual MAIL would invoke. (Note that any 2xx code indicates success.) The stored message text is not forgotten until the next MAIL or MRSQ, which will either replace it with new text or flush it entirely. Any use of MRSQ will reset this scheme by flushing stored text, as will any use of MAIL with a non-null receiver-path argument. If an MRCP is seen before any message text has been stored, the sender in effect is trying to send a null message; some receivers might allow this, others would return an error code.[Page 12] Sluizer & Postel RFC 780 May 1981 Mail Transfer Protocol ------------------------------------------------------------- Example of MRSQ T (Text First) First the sender must establish that the receiver implements MRSQ.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -