📄 rfc970.txt
字号:
general, experience indicates that many-player systems with this type of instability tend to get into serious trouble. Solutions to the tragedy of the commons problem fall into three classes: cooperative, authoritarian, and market solutions. Cooperative solutions, where everyone agrees to be well-behaved, are adequate for small numbers of players, but tend to break down as the number of players increases. Authoritarian solutions are effective when behavior can be easily monitored, but tend to fail if the definition of good behavior is subtle. A market solution is possible only if the rules of the game can be changed so that the optimal strategy for players results in a situation that is optimal for all. Where this is possible, market solutions can be quite effective. The above analysis is generally valid for human players. In the network case, we have the interesting situation that the player is a computer executing a preprogrammed strategy. But this alone does not insure good behavior; the strategy in the computer may be programmed to optimize performance for that computer, regardless of network considerations. A similar situation exists with automatic redialing devices in telephony, where the user's equipment attempts to improve performance over an overloaded network by rapidly redialing failed calls. Since call-setup facilities are scarce resources in telephone systems, this can seriously impact the network; there are countriesNagle [Page 5]RFC 970 December 1985On Packet Switches With Infinite Storage that have been forced to prohibit such devices. (Brazil, for one). This solution by administrative fiat is sometimes effective and sometimes not, depending on the relative power of the administrative authority and the users. As transport protocols become more commercialized and competing systems are available, we should expect to see attempts to tune the protocols in ways that may be optimal from the point of view of a single host but suboptimal from the point of view of the entire network. We already see signs of this in the transport protocol implementation of one popular workstation manufacturer. So, to return to our analysis of a pure datagram internetwork, an authoritarian solution would order all hosts to be "well-behaved" by fiat; this might be difficult since the definition of a well-behaved host in terms of its externally observed behavior is subtle. A cooperative solution faces the same problem, along with the difficult additional problem of applying the requisite social pressures in a distributed system. A market solution requires that we make it pay to be well-behaved. To do this, we will have to change the rules of the game.Fairness in Packet Switching Systems We would like to protect the network from hosts that are not well-behaved. More specifically, we would like, in the presence of both well-behaved and badly-behaved hosts, to insure that well-behaved hosts receive better service than badly-behaved hosts. We have devised a means of achieving this. Let us consider a network that consists of high-bandwidth pure-datagram local area networks without flow control (Ethernet and most IEEE 802.x datagram systems are of this class, whether based on carrier sensing or token passing), hosts connected to these local area networks, and an interconnected wide area network composed of packet switches and long-haul links. The wide area network may have internal flow control, but has no way of imposing mandatory flow control on the source hosts. The DoD Internet, Xerox Network Systems internetworks, and the networks derived from them fit this model. If any host on a local area network generates packets routed to the wide area network at a rate greater than the wide area network can absorb them, congestion will result in the packet switch connecting the local and wide area networks. If the packet switches queue on a strictly first in, first out basis, the badly behaved host will interfere with the transmission of data by other, better-behaved hosts.Nagle [Page 6]RFC 970 December 1985On Packet Switches With Infinite Storage We introduce the concept of fairness. We would like to make our packet switches fair; in other words, each source host should be able to obtain an equal fraction of the resources of each packet switch. We can do this by replacing the single first in, first out queue associated with each outgoing link with multiple queues, one for each source host in the entire network. We service these queues in a round- robin fashion, taking one packet from each non-empty queue in turn and transmitting the packets with positive time to live values on the associated outgoing link, while dropping the expired packets. Empty queues are skipped over and lose their turn. This mechanism is fair; outgoing link bandwidth is parcelled out equally amongst source hosts. Each source host with packets queued in the switch for the specified outgoing link gets exactly one packet sent on the outgoing link each time the round robin algorithm cycles. So we have implemented a form of load-balancing. We have also improved the system from a game theory point of view. The optimal strategy for a given host is no longer to send as many packets as possible. The optimal strategy is now to send packets at a rate that keeps exactly one packet waiting to be sent in each packet switch, since in this way the host will be serviced each time the round-robin algorithm cycles, and the host's packets will experience the minimum transit delay. This strategy is quite acceptable from the network's point of view, since the length of each queue will in general be between 1 and 2. The hosts need advisory information from the network to optimize their strategies. The existing Source Quench mechanism in DoD IP, while minimal, is sufficient to provide this. The packet switches should send a Source Quench message to a source host whenever the number of packets in the queue for that source host exceeds some small value, probably 2. If the hosts act to keep their traffic just below the point at which Source Quench messages are received, the network should run with mean queue lengths below 2 for each host. Badly-behaved hosts can send all the datagrams they want, but will not thereby increase their share of the network resources. All that will happen is that packets from such hosts will experience long transit times through the network. A sufficiently badly-behaved host can send enough datagrams to push its own transit times up to the time to live limit, in which case none of its datagrams will get through. This effect will happen sooner with fair queuing than with first in, first out queuing, because the badly- behaved host will only obtain a share of the bandwidth inversely proportional to the number of hosts using the packet switch at the moment. This is muchNagle [Page 7]RFC 970 December 1985On Packet Switches With Infinite Storage less than the share it would have under the old system, where more verbose hosts obtained more bandwidth. This provides a strong incentive for badly-behaved hosts to improve their behavior. It is worth noting that malicious, as opposed to merely badly-behaved, hosts, can overload the network by using many different source addresses in their datagrams, thereby impersonating a large number of different hosts and obtaining a larger share of the network bandwidth. This is an attack on the network; it is not likely to happen by accident. It is thus a network security problem, and will not be discussed further here. Although we have made the packet switches fair, we have not thereby made the network as a whole fair. This is a weakness of our approach. The strategy outlined here is most applicable to a packet switch at a choke point in a network, such as an entry node of a wide area network or an internetwork gateway. As a strategy applicable to an intermediate node of a large packet switching network, where the packets from many hosts at different locations pass through the switch, it is less applicable. The writer does not claim that the approach described here is a complete solution to the problem of congestion in datagram networks. However, it presents a solution to a serious problem and a direction for future work on the general case.Implementation The problem of maintaining a separate queue for each source host for each outgoing link in each packet switch seems at first to add considerably to the complexity of the queuing mechanism in the packet switches. There is some complexity involved, but the manipulations are simpler than those required with, say, balanced binary trees. One simple implementation involves providing space for pointers as part of the header of each datagram buffer. The queue for each source host need only be singly linked, and the queue heads (which are the first buffer of each queue) need to be doubly linked so that we can delete an entire queue when it is empty. Thus, we need three pointers in each buffer. More elaborate strategies can be devised to speed up the process when the queues are long. But the additional complexity is probably not justified in practice. Given a finite buffer supply, we may someday be faced with buffer exhaustion. In such a case, we should drop the packet at the end of the longest queue, since it is the one that would be transmitted last. This, of course, is unfavorable to the host with the most datagrams in the network, which is in keeping with our goal of fairness.Nagle [Page 8]RFC 970 December 1985On Packet Switches With Infinite StorageConclusion By breaking away from packet switching's historical fixation on buffer management, we have achieved some new insights into congestion control in datagram systems and developed solutions for some known problems in real systems. We hope that others, given this new insight, will go on to make some real progress on the general datagram congestion problem.References [1] Nagle, J. "Congestion Control in IP/TCP Internetworks", ACM Computer Communications Review, October 1984.Editor's Notes <1> The buffer space required for just one 10Mb Ethernet with an upper bound on the time-to-live of 255 is 318 million bytes.Nagle [Page 9]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -