📄 rfc985.txt
字号:
2.2. Internet Control Message Protocol (ICMP) This is an auxiliary protocol used to convey advice and error messages and is described in RFC-792 [2]. The distinction between subnets of a subnetted network, which depends on an arbitrary mask as described in RFC-950 [21], is in general not visible outside that network. This distinction is important in the case of certain ICMP messages, including the ICMPNTAG [Page 6]RFC 985 May 1986Requirements for Internet Gateways -- DRAFT Destination Unreachable and ICMP Redirect messages. The ICMP Destination Unreachable message is sent by a gateway in response to a datagram which cannot be forwarded because the destination is unreachable or down. A choice of several types of these messages is available, including one designating the destination network and another the destination host. However, the span of addresses implied by the former is ill-defined unless the subnet mask is known to the sender, which is in general not the case. It is recommended that use of the ICMP Destination Network Unreachable messages be avoided. Instead, an ICMP Destination Host Unreachable message should be sent for each distinct unreachable IP address. The ICMP Redirect message is sent by a gateway to a host in order to change the address used by the host for a designated host or net. A choice of four types of messages is available, depending on whether it applies to a particular host, network or service. As in the previous case, these distinctions may depend upon the subnet mask. As in the above case, it is recommended that the use of ICMP messages implying a span of addresses (e.g. net unreachable, net redirect) be avoided in favor of those implying specific addresses (e.g. host unreachable, host redirect). The ICMP Source Quench message has been the subject of much controversy. It is not considered realistic at this time to specify in detail the conditions under which this message is to be generated or interpreted by a host or gateway. New host and gateway implementations are expected to support the ICMP Address Mask messages described in RFC-950. It is highly desirable, although not required, to provide correct data for ICMP Timestamp messages, which have been found useful in network debugging and maintenance. 2.3. Exterior Gateway Protocol (EGP) This is the basic protocol used to exchange information between gateway systems of the Internet and is described in RFC-904 [11]. However, EGP as presently specified is an asymmetric protocol with only the "non-core" procedures defined in RFC-904. There are at present no "core" procedures specified, which would be necessary for a stand-alone Internet. RFC-975 [27] suggests certain modifications leading to a symmetric model; however, this is not an official specification. In principle, a stand-alone Internet can be built with non-core EGP gateways using the EGP distance field to convey some metricNTAG [Page 7]RFC 985 May 1986Requirements for Internet Gateways -- DRAFT such as hop count. However, the use of EGP in this way as a routing algorithm is discouraged, since typical implementations adapt very slowly to changing topology and have no loop-protection features. The EGP model requires each gateway belong to an autonomous system of gateways. If a routing algorithm is operated in one or more gateways of an autonomous system, its data base must be coupled to the EGP implementation in such a way that, when a net is declared down by the routing algorithm, the net is also declared down via EGP to other autonomous systems. This requirement is designed to minimize spurious traffic to "black holes" and insure fair utilization of the resources on other systems. There are no peer-discovery or authentication procedures defined in the present EGP specification and no defined interpretation of the distance fields in the update messages, although such procedures may be defined in future (see RFC-975). There is currently no guidance on the selection of polling parameters and no specific recovery procedures in case of certain error messages (e.g. "administratively prohibited"). It is recommended that EGP implementations include provisions to initialize these parameters as part of the monitoring and control procedures and that changing these procedures not require recompilation or rebooting the gateway. 2.4. Address Resolution Protocol (ARP) This is an auxiliary protocol used to manage the address-translation function between hardware addresses in a local-net environment and Internet addresses and described in RFC-826 [4]. However, there are a number of unresolved issues having to do with subnets and response to addresses not in the same subnet or net. These issues, which are intertwined with ICMP and various gateway models, are discussed in Appendix A.3. Subnets The concept of subnets was introduced in order to allow arbitrary complexity of interconnected LAN structures within an organization, while insulating the Internet system against explosive growth in network numbers and routing complexity. The subnet architecture, described in RFC-950 [21], is intended to specify a standard approach that does not require reconfiguration for host implementations, regardless of subnetting scheme. The document also specifies a newNTAG [Page 8]RFC 985 May 1986Requirements for Internet Gateways -- DRAFT ICMP Address Mask message, which a gateway can use to specify certain details of the subnetting scheme to hosts and is required in new host and gateway implementations. The current subnet specification RFC-950 does not describe the specific procedures to be used by the gateway, except by implication. It is recommended that a (sub)net address and address mask be provided for each network interface and that these values be established as part of the gateway configuration procedure. It is not usually necessary to change these values during operation of any particular gateway; however, it should be possible to add new gateways and/or (sub)nets and make other configuration changes to a gateway without taking the entire network down.4. Local Network Interface The packet format used for transmission of datagrams on the various subnetworks is described in a number of documents summarized below. 4.1. Public data networks via X.25 The formats specified for public data networks via X.25 access are described in RFC-877 [8]. Datagrams are transmitted over standard level-3 virtual circuits as complete packet sequences. Virtual circuits are usually established dynamically as required and time out after a period of no traffic. Retransmission, resequencing and flow control are performed by the network for each virtual circuit and by the LAPB link-level protocol. Multiple parallel virtual circuits are often used in order to improve the utilization of the subscriber access line, which can result in random resequencing. The correspondence between Internet and X.121 addresses is usually established by table-lookup. It is expected that this will be replaced by some sort of directory procedure in future. 4.2. ARPANET via 1822 Local Host, Distant Host or HDLC Distant Host The formats specified for ARPANET networks via 1822 access are described in BBN Report 1822 [3], which includes the procedures for several subscriber access methods. The Local Host (LH) and Very Distant Host (VDH) methods are not recommended for new implementations. The Distant Host (DH) method is used when the host and IMP are separated by not more than about 2000 feet of cable, while the HDLC Distant Host is used for greater distances where a modem is required. Retransmission, resequencing and flow control are performed by the network and by the HDLC link-level protocol, when used. While the ARPANET 1822 protocols are widelyNTAG [Page 9]RFC 985 May 1986Requirements for Internet Gateways -- DRAFT used at present, they are expected to be eventually overtaken by the DDN Standard X.25 protocol (see below) and the new PSN End-to-End Protocol described in RFC-979 [29]. While the cited report gives details of the various ARPANET subscriber access methods, it specifies neither the IP packet encapsulation format nor address mappings. While these are generally straightforward and easy to implement, the details involve considerations beyond the scope of readily accessable documentation. Potential vendors are encouraged to contact one of the individuals listed at the beginning of this document for further information. Gateways connected to ARPANET/MILNET IMPs must incorporate features to avoid host-port blocking (RFNM counting) and to detect and report (as ICMP Unreachable messages) the failure of destination hosts or gateways. 4.3. ARPANET via DDN Standard X.25 The formats specified for ARPANET networks via X.25 are described in the Defense Data Network X.25 Host Interface Specification [6]. This document describes two sets of procedures, the DDN Basic X.25 and the DDN Standard X.25, but only the latter is suitable for use in the Internet system. The DDN Standard X.25 procedures are similar to the public data subnetwork X.25 procedures, except in the address mappings. Retransmission, resequencing and flow control are performed by the network and by the LAPB link-level protocol. 4.4. Ethernets The formats specified for Ethernet networks are described in RFC-894 [10]. Datagrams are encapsulated as Ethernet packets with 48-bit source and destination address fields and a 16-bit type field. Address translation between Ethernet addresses and Internet addresses is managed by the Address Resolution Protocol, which is required in all Ethernet implementations. There is no explicit retransmission, resequencing or flow control. although most hardware interfaces will retransmit automatically in case of collisions on the cable. It is expected that amendments will be made to this specification as the result of IEEE 802.3 evolution. See RFC-948 [20] for further discussion and recommendations in this area. Note also that the IP broadcast address, which has primary application to Ethernets and similar technologies that support an inherentNTAG [Page 10]RFC 985 May 1986Requirements for Internet Gateways -- DRAFT broadcast function, has an all-ones value in the host field of the IP address. Some early implementations chose the all-zeros value for this purpose, which is presently not in conformance with the definitive specification RFC-950 [21]. See Appendix A for further considerations. 4.5. Serial-Line Protocols Gateways may be used as packet switches in order to build networks. In some configurations gateways may be interconnected with each other and some hosts by means of serial asynchronous or synchronous lines, with or without modems. When justified by the expected error rate and other factors, a link-level protocol may be required on the serial line. While there is no requirement that a particular standard protocol be used for this, it is recommended that standard hardware and protocols be used, unless a convincing reason to the contrary exists. In order to support the greatest variety of configurations, it is recommended that some variation on full X.25 (i.e. "symmetric mode") be used where resources permit; however, X.25 LAPB would also be acceptable where requirements permit. In the case of asynchronous lines no clear choice is apparent.5. Interoperability In order to assure interoperability between gateways procured from different vendors, it is necessary to specify points of protocol demarcation. With respect to interoperability of the routing function, this is specified as EGP. All gateway systems must include one or more gateways which support EGP with a core gateway, as described in RFC-904 [11]. It is desirable that these gateways be able to operate in a mode that does not require a core gateway or system. Additional discussion on these issues can be found in RFC-975 [27]. With respect to the interoperability at the network layer and below, two points of protocol demarcation are specified, one for Ethernets and the other for serial lines. In the case of Ethernets the protocols are as specified in Section 4.4 and Appendix A of this document. For serial lines between gateways of different vendors, the protocols are specified in Section 4.5 of this document. Exceptions to these requirements may be appropriate in some cases.NTAG [Page 11]RFC 985 May 1986Requirements for Internet Gateways -- DRAFT6. Subnetwork Architecture It is recognized that gateways may also function as general packet switches to build networks of modest size. This requires additional functionality in order to manage network routing, control and configuration. While it is beyond the scope of this document to specify the details of the mechanisms used in any particular, perhaps proprietary, architecture, there are a number of basic requirements which must be provided by any acceptable architecture. 6.1. Reachability Procedures The architecture must provide a robust mechanism to establish the operational status of each link and node in the network, including the gateways, the links connecting them and, where appropriate, the hosts as well. Ordinarily, this requires at least a link-level reachability protocol involving a periodic exchange of hello messages across each link. This function might be intrinsic to the link-level protocols used (e.g. LAPB, DDCMP). However, it is in general ill-advised to assume a host or gateway is operating correctly if its link-level reachability protocol is operating correctly. Additional confirmation is required in the form of an operating routing algorithm or peer-level reachability protocol,
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -