📄 rfc988.txt
字号:
Network Working Group S. E. DeeringRequest for Comments: 988 Stanford University July 1986 Host Extensions for IP Multicasting1. STATUS OF THIS MEMO This memo specifies the extensions required of a host implementation of the Internet Protocol (IP) to support internetwork multicasting. This specification supersedes that given in RFC-966, and constitutes a proposed protocol standard for IP multicasting in the ARPA-Internet. The reader is directed to RFC-966 for a discussion of the motivation and rationale behind the multicasting extension specified here. Distribution of this memo is unlimited.2. INTRODUCTION IP multicasting is defined as the transmission of an IP datagram to a "host group", a set of zero or more hosts identified by a single IP destination address. A multicast datagram is delivered to all members of its destination host group with the same "best-efforts" reliability as regular unicast IP datagrams, i.e. the datagram is not guaranteed to arrive at all members of the destination group or in the same order relative to other datagrams. The membership of a host group is dynamic; that is, hosts may join and leave groups at any time. There is no restriction on the location or number of members in a host group, but membership in a group may be restricted to only those hosts possessing a private access key. A host may be a member of more than one group at a time. A host need not be a member of a group to send datagrams to it. A host group may be permanent or transient. A permanent group has a well-known, administratively assigned IP address. It is the address, not the membership of the group, that is permanent; at any time a permanent group may have any number of members, even zero. A transient group, on the other hand, is assigned an address dynamically when the group is created, at the request of a host. A transient group ceases to exist, and its address becomes eligible for reassignment, when its membership drops to zero. The creation of transient groups and the maintenance of group membership information is the responsibility of "multicast agents", entities that reside in internet gateways or other special-purpose hosts. There is at least one multicast agent directly attached to every IP network or subnetwork that supports IP multicasting. A host requests the creation of new groups, and joins or leaves existing groups, by exchanging messages with a neighboring agent.Deering [Page 1]RFC 988 July 1986Host Extensions for IP Multicasting Multicast agents are also responsible for internetwork delivery of multicast IP datagrams. When sending a multicast IP datagram, a host transmits it to a local network multicast address which identifies all neighboring members of the destination host group. If the group has members on other networks, a multicast agent becomes an additional recipient of the local multicast and relays the datagram to agents on each of those other networks, via the internet gateway system. Finally, the agents on the other networks each transmit the datagram as a local multicast to their own neighboring members of the destination group. This memo specifies the extensions required of a host IP implementation to support IP multicasting, where a "host" is any internet host or gateway other than those serving as multicast agents. The algorithms and protocols used within and between multicast agents are transparent to non-agent hosts and will be specified in a separate document. This memo also does not specify how local network multicasting is accomplished for all types of network, although it does specify the required service interface to an arbitrary local network and gives an Ethernet specification as an example. Specifications for other types of network will be the subject of future memos.3. LEVELS OF CONFORMANCE There are three levels of conformance to this specification: Level 0: no support for IP multicasting. There is, at this time, no requirement that all IP implementations support IP multicasting. Level 0 hosts will, in general, be unaffected by multicast activity. The only exception arises on some types of local network, where the presence of level 1 or 2 hosts may cause misdelivery of multicast IP datagrams to level 0 hosts. Such datagrams can easily be identified by the presence of a class D IP address in their destination address field; they should be quietly discarded by hosts that do not support IP multicasting. Class D addresses are defined in section 4 of this memo.Deering [Page 2]RFC 988 July 1986Host Extensions for IP Multicasting Level 1: support for sending but not receiving multicast IP datagrams. Level 1 allows a host to partake of some multicast-based services, such as resource location or status reporting, but it does not allow a host to create or join any host groups. An IP implementation may be upgraded from level 0 to level 1 very easily and with little new code. Only sections 4, 5, and 6 of this memo are applicable to level 1 implementations. Level 2: full support for IP multicasting. Level 2 allows a host to create, join and leave host groups, as well as send IP datagrams to host groups. It requires implementation of the Internet Group Management Protocol (IGMP) and extension of the IP and local network service interfaces within the host. All of the following sections of this memo are applicable to level 2 implementations.4. HOST GROUP ADDRESSES Host groups are identified by class D IP addresses, i.e. those with "1110" as their high-order four bits. The remaining 28 bits are unstructured as far as hosts are concerned. The addresses of well-known, permanent groups are to be published in "Assigned Numbers". Class E IP addresses, i.e. those with "1111" as their high-order four bits, are reserved for future addressing modes. Appendix II contains some background discussion of several issues related to host group addresses.Deering [Page 3]RFC 988 July 1986Host Extensions for IP Multicasting5. MODEL OF A HOST IP IMPLEMENTATION The multicast extensions to a host IP implementation are specified in terms of the layered model illustrated below. In this model, ICMP and (for level 2 hosts) IGMP are considered to be implemented within the IP module, and the mapping of IP addresses to local network addresses is considered to be the responsibility of local network modules. This model is for expository purposes only, and should not be construed as constraining an actual implementation. | | | Upper-Layer Protocol Modules | |__________________________________________________________| --------------------- IP Service Interface ----------------------- __________________________________________________________ | | | | | | ICMP | IGMP | | IP |______________|______________| | Module | | | |__________________________________________________________| ---------------- Local Network Service Interface ----------------- __________________________________________________________ | | | | Local | IP-to-local address mapping | | Network | (e.g. ARP) | | Modules |_____________________________| | (e.g. Ethernet) | | | To support level 2 IP multicasting, a host IP implementation must provide three new services: (1) sending multicast IP datagrams, (2) receiving multicast IP datagrams, and (3) managing group membership. Only the first service need be provided in level 1 hosts. Each of these services is described in a separate section, below. For each service, extensions are specified for the IP service interface, the IP module, the local network service interface, and an Ethernet local network module. Extensions to local network modules other than Ethernet are mentioned briefly, but are not specified in detail.Deering [Page 4]RFC 988 July 1986Host Extensions for IP Multicasting6. SENDING MULTICAST IP DATAGRAMS 6.1. Extensions to the IP Service Interface No change to the IP service interface is required to support the sending of multicast IP datagrams. An upper-layer protocol module merely specifies an IP host group destination, rather than an individual IP destination, when it invokes the existing "Send IP" operation. 6.2. Extensions to the IP Module To support the sending of multicast IP datagrams, the IP module must be extended to recognize IP host group addresses when routing outgoing datagrams. Most IP implementations include the following logic: if IP-destination is on the same local network, send datagram locally to IP-destination else send datagram locally to GatewayTo(IP-destination) To allow multicast transmissions, the routing logic must be changed to: if IP-destination is on the same local network or IP-destination is a host group, send datagram locally to IP-destination else send datagram locally to GatewayTo(IP-destination) If the sending host is itself a member of the destination group, a copy of the outgoing datagram must be looped-back for local delivery if and only if loopback was requested when the host joined the group (see section 8.1). (This issue does not arise in level 1 implementations.) On hosts attached to more than one network, each multicast IP datagram must be transmitted via one network interface only, leaving it to the multicast agents to effect delivery to any other required networks. A host group address should not be placed in the source address field of an outgoing IP datagram. A host group address may be used in a source routing option as the last element only. It should be noted that a small IP time-to-live (TTL) value canDeering [Page 5]RFC 988 July 1986Host Extensions for IP Multicasting prevent delivery to some members of a destination group. Thus, a large TTL value should be used to reach all members. Conversely, a small TTL value can be used to advantage to reach only "nearby" members of a widely-dispersed group. In clusters of low-delay local area networks, the TTL field acts as a hop limit; thus, one can perform expanding-ring searches by starting with a TTL of 1 and incrementing on each retransmission, up to some limit defined by the diameter of the cluster. 6.3. Extensions to the Local Network Service Interface No change to the local network service interface is required to support the sending of multicast IP datagrams. The IP module merely specifies an IP host group destination, rather than an individual IP destination, when it invokes the existing "Send Local" operation. 6.4. Extensions to an Ethernet Local Network Module The Ethernet directly supports the sending of local multicast packets by allowing multicast addresses in the destination field of Ethernet packets. All that is needed to support the sending of multicast IP datagrams is a procedure for mapping IP host group addresses to Ethernet multicast addresses. An IP host group address is mapped to an Ethernet multicast address by placing the low-order 28-bits of the IP address into the low-order 28 bits of an Ethernet address. The high-order 20 bits of the Ethernet address are set to a well-known value, to be published in "Assigned Numbers". [At time of publication of this memo, a block of Ethernet multicast addresses with 28 unspecified bits had not yet been obtained from the allocating authority. If such a block of addresses cannot be obtained, an alternative mapping scheme will be specified.] 6.5. Extensions to Local Network Modules other than Ethernet Other networks that directly support multicasting, such as rings or buses conforming to the IEEE 802.2 standard, can be handled the same way as Ethernet for the purpose of sending multicast IP datagrams. For a network that supports broadcast but not multicast, such as the Experimental Ethernet, all IP host group addresses can be mapped to a single local broadcast address (at the cost of increased overhead on all local hosts). For a point-to-point networks like the ARPANET or a public data networkDeering [Page 6]RFC 988 July 1986Host Extensions for IP Multicasting (X.25), all IP host group addresses might be mapped to the well-known local address of an IP multicast agent; an agent on such a network would take responsibility for completing multicast delivery within the network as well as among networks.7. RECEIVING MULTICAST IP DATAGRAMS 7.1. Extensions to the IP Service Interface No change to the IP service interface is required to support the reception of multicast IP datagrams. Incoming multicast IP datagrams are delivered to upper-layer protocol modules using the same "Receive IP" operation as normal, unicast datagrams. 7.2. Extensions to the IP Module To support the reception of multicast IP datagrams, the IP module must be extended to recognize the addresses of IP host groups to which the host currently belongs, in addition to the host's individual IP address(es). An incoming datagram destined to one of those group addresses is processed exactly the same way as datagrams destined to one of the host's individual addresses. Incoming datagrams destined to groups to which the host does not belong are discarded without generating any error report. On hosts attached to more than one network, if a datagram arrives via one network interface, destined for a group to which the host belongs only on a different interface, the datagram is quietly discarded. (This should occur only as a result of inadequate multicast address filtering in the local network module.) An incoming datagram is not rejected for having an IP host group address in its source address field or anywhere in a source
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -