📄 rfc898.txt
字号:
RFC 898 April 1984Gateway SIG Meeting Notes BBN Van gateway PSS - IPSS -Telenet - for hosts that can't use SATNET. SAM does access control and multihoming. Clever Multihoming gives host a second address and sends an ICMP/Redirect to force TCP connection to go through a different route, but wind up at same place!!! Wrote EGP in ADA. It didn't help at all. Design of the FACC Multinet Gateway -- FACC - Cook Postel: This is a distributed multiprocessor machine using a special bus network for the interprocessor communication. The softaware is written in C. The gateways is in an early test phase. Muuss: RADC program Started with AUTODIN II, switched to DDN. Small to large switching devices. DoD uses of PDNs, and partitioned network problems. Distributed processing architecture - Parallel contention, 90M bps bus, 22 wires. Each node has cpu, memory, optimal comm line. Wire - OR presentation of address, contention happens each time bus becomes free, all requestors put out type of msg, pri, and address. Reads back wire - OR of result, and highest gwy wins, sorted by (pri, type, higher addr). Bus was originally designed for our FAA fail-soft application Z-800l w/MMU. Not binary addressing, but unitary (base1) One element resolved per bus transaction. Boards may be plugged in while running. Inherent parallelism in layered protocols. Interface connector clues board to modem levels and date rate. Up to 100K bps now, soon up to T1 rate. Multiprocessor approach allows routing calculation to take place out-of-band from the measurement of delay and traffic, and allows use of more compute power for routing. Mostly written in C, with some assembler. Multiprocessor operating system, designed from scratch.Hinden, Postel, Muuss, & Reynolds [Page 17]RFC 898 April 1984Gateway SIG Meeting Notes SAC Gateway -- SRI - Su/Lewis Postel: This was a presentation of the design for the gateways to be used in the advanced SAC demo experiments on network partitioning and reconstitution, and communication between intermingiling mobile networks. Much of these demonstrations will be done with packet radio units and networks. Some of the ideas are to use a gateway-centered type of addressing and double encapsulation (i.e., an extra IP header) to route datagrams. Muuss: Network dynamics due to component mobility or failure. Mobile host, reconstitution, partitioning. H/W: 11/23 S/W: Some "C" gateway OS: VMOS (SRI) Gateway-centered addressing, rather than network. Gw host instead of net.host. Double encapsulation: additional IP header. TCP uses addr as an ID, IP uses it as an ADDRESS (-> route) Need to separate these dual uses of this address field. Incremental Routing (next-hop indication) EGP -- Linkabit - Mills Postel: A presentation of the EGP design. EGP has three major aspects, neighbor acquisition, neighbor reachability, and network reachability. The autonomous system concept was discussed. Muuss: Background, Implementation, Experience, Disparaging Remarks Design goals - o Established demarcations o Decouple implementations o Confine routing loops o Exchange reachability information o Provide flow control for connectivity information o Medium-term lifetime Non goals Not trying to do these! o Flexibility of topology o Rapid response Very slow updateHinden, Postel, Muuss, & Reynolds [Page 18]RFC 898 April 1984Gateway SIG Meeting Notes o Adaptive routing o Common routing metric No agreement at all o Load sharing or splitting "Good news travels fast and bad news travels forever." Not for routing, but only provides reachability RFC827 initial mode, RFC888 stub protocol Neighbor acquisition protocol o 2-way shake o Flow - rates o Explicit acquisition/cause Neighbor reachability protocol o Periodic polling o Parasitic information o Reachability algorithm Network reachability protocol o Periodic pulling o Remote information o Direct and indirect neighbors o Indirect internal and indirect external neighbors o Distance information EGP neighbors do not need to peer with more than one CORE gateway, but you may peer with anybody you wish. Shortcomings - o Slow reaction due polling o Tree-structured routing constraint - Rigid topology - Administrative resistance to odering - Lack of adaptive connectivity o Neighbor acquisition incomplete. Loops between autonomous systems will last a long time, and are a real no-no. System models - o "Appropriate first hop" criterion - Not useful for implementation - Requires global information - Inadequate for verification o Graph models - N-graph shows net connectivity - T-graph shows system connectivityHinden, Postel, Muuss, & Reynolds [Page 19]RFC 898 April 1984Gateway SIG Meeting Notes - T-acycloc criterion insures loop-free o Derived features - Induces spanning tree N-graph G1 A_______________B / \ /\ G2 / \ G3 G4 / \ G5 / \ / \ C------D E-----F G6 AS1 = G2, G3, G6 A B AS2 = G1 AS3 = G4, G5 AS1 ----- AS2 ----- AS3 T-graph Test: to ensure that there are no cycles Spanning subtree Specification effort - Status report State machine designed Remaining issues - o Remove extra hop in core system o Expand tables o Test backdoor "GGP" o Resolve specification issues o Resolve full gateway configuration - Back door connectivity guidance - can only advertise 1 path at a time. - APF rule guidancee - Self organization issues o Implement and distribute for operational systems. Congestion Control -- FACC - Nagle Postel: This was a discussion of the situation leading to the ideas presented in RFC 896, and how the policies described there improved overall performance.Hinden, Postel, Muuss, & Reynolds [Page 20]RFC 898 April 1984Gateway SIG Meeting Notes Muuss: First principle of congestion control: DON'T DROP PACKETS (unless absolutely necessary) Second principle: Hosts must behave themselves (or else) Enemies list - 1. TOPS-20 TCP from DEC 2. VAX/UNIX 4.2 from Berkeley Third principle: Memory won't help (beyond a certain point). The small packet problem: Big packets are good, small are bad (big = 576). Suggested fix: Rule: When the user writes to TCP, initiate a send only if there are NO outstanding packets on the connection. [good for TELNET, at least] (or if you fill a segment). No change when Acks come back. Assumption is that there is a pipe-like buffer between the user and the TCP. The source quench problem Rule: When a TCP gets an ICMP Source Quench, it must reduce the number of outstanding datagrams on relevant TCP connections. Rule: When a gateway nears overload, before starting to drop packets, send a Source Quench. Node capacity: Each node ought to have one buffer for each TCP connection, plus some for overload. Both fixes really need to be done together, although the first one is often helpful by itself. Side effect: FTPs start off "slowly," until the first Ack comes back Dave Mills thinks this will increase the mean delay for medium-size interactions. This probably will not work so well for SATNET. Problems about propagation time of links biasing the validity of this result!!Hinden, Postel, Muuss, & Reynolds [Page 21]RFC 898 April 1984Gateway SIG Meeting Notes A Gateway Congestion Control Policy--NW Systems - Niznik Postel: This talk was (for Postel) hard to follow. There were a number of references to well known results in queuing theory etc, but I could not follow how they were being used. Muuss: Replacements for IMP SPF Topological observations Nodal congestion control policy GMD - control application [from German network] RPN - relational Petri net DCT - dynamic congestion table NCCP performance evaluation Planned GCCP: Gateway congestion control policy Lots of diagrams and figures. Better throughput than SPF, but somewhat higher delay. Cubic structure of table. DISCUSSION (Postel's personal comments) There was very little organized discussion during the meeting and not really very much question and answer interaction during the presentation. There was a lot of discussion during the breaks, and at lunch time, and at the end of each day. Some things that occured to me during the meeting that may have been triggered by something someone said (or maybe by the view out the window): Don't design a protocol where you expect to get a lot of messages from a lot of sources at the same time. For example, don't ask all the hosts on an Ethernet to send you an ack to a broadcast packet. Has anyone worked out in detail the routing traffic costs for the GGP vs the SPF procedures for the actual case of the Internet? How will the fact that thinking of the routing in the core autonomous system is cast in terms of an entry and an exit gateway effect other things? Will there be specialHinden, Postel, Muuss, & Reynolds [Page 22]RFC 898 April 1984Gateway SIG Meeting Notes arrangements between the entry and exit gateway? Will an autonomous system become a circuit switch connecting pairs of entry/exit gateways? Is TOS routing worth the cost? Should we allow (as a new type of ICMP message) redirects to Gateways? Does making memory larger ever hurt? If a gateway's memory is full of inappropriately retransmitted TCP segments would it be better if there were less memory? Is there something reasonable to do with source quench at the TCP? Re: RFC-896. If there are links (or networks) of vastly differing delay and thruput characteristics what impact would an IP level load splitting (say by gateways) have on TCP connections (some of the segments of the connection go one path and others go a different path)? Are any problems avoided (either way) by using double IP headers vs a "source route like" IP option to separate the IP level addressing and routing function from the TCP level end-point naming function of the IP addresses. What bad things could happen from the proposed IP multidestination routing option?Hinden, Postel, Muuss, & Reynolds [Page 23]RFC 898 April 1984Gateway SIG Meeting NotesMEETING ATTENDEES Mike Accetta - CMU R. Buhr - Canada J. Noel Chiappa - MIT Paul Cook - Ford Jon Crowcroft - UCL Barbara Denny - SRI Jim Forgie - LL Steve Groff - BBN Phill Gross - Linkabit Kjell Hermansen - NTA Robert Hinden - BBN Patrick Holkenbrink - FACC Ruth Hough - AIRINC Willie Kantrowitz - LL Paul Kirton -ISI Mark Lewis -SRI Liza Martin - MIT Doug Miller - MITRE Dave Mills - Linkabit Mike Muuss - BRL Jose Nabielsky - MITRE Ron Natalie - BRL John Nagle - Ford Carol Niznick NW Systems Jon Postel - ISI Joyce Reynolds -ISI Marshall Rose - UCI Joe Sciortino - AIRINC Linda Seamonson - BBN Nachum Shacham - SRI Alan Sheltzer - UCLA Marvin Solomon - WISC Zaw-Sing Su - SRI Mitch Tasman - BBNHinden, Postel, Muuss, & Reynolds [Page 24]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -