📄 rfc809.txt
字号:
The details of this technique are described in [3] and [4]. It may also be required that a picture be enlarged. This enlargement can be done by simply duplicating each pixel in the picture. For a non-integral ratio, the picture can be expanded up to the nearest integer and then shrunk to the correct size. However, this method may degrade the image quality, e.g. the oblique contour may become stepped, especially when the picture is enlarged too much. This problem can be solved by using an iterative enlargement algorithm. Each time a pixel is replaced with a 2x2 array of pixels, whose pattern depends on the original pixel and the pixels surrounding it. This procedure is repeated until the requested ratio is reached. If the ration is not a power of 2's, the same method as that for non-integral ratios is used. - 10 -UCL FACSIMILE SYSTEM INDRA Note 1185 As a side effect of developing this technique, we could freely change the size and shape of an image. The picture can be expanded or shrunk, or it can be distorted. Distortion, whereby the horizontal and vertical dimensions of the image may be changed by different amounts, is often useful in image editing. The immediate consequence of this ability to change the image size meant that we could display the image on a screen as well as output the image on a facsimile machine. To a user of a computerised facsimile system this could be a very useful feature: images can be displayed on screen much faster than on a facsimile machine, and displays are significantly cheaper than the facsimile machines as well. It is possible that an installation could have many screen displays where the image could be viewed, but perhaps only one facsimile machine would be available for hard copy. This would be similar to many computer configurations today where the number of printers is limited due to their cost, and display screens are far more numerous. 2.3 Image Enhancement One aspect of computer processing that we wanted to investigate was that of image enhancement. Enhancing the image is a very tricky operation; as the name implies it means that the image is improved in some sense. Under program control this is difficult to achieve: what the program thinks is an improvement, the human might judge to be distinctly worse. Our enhancement attempts were aimed particularly at printed documents and other forms of typed text. The experiment was double pronged: we hoped to make the image easier to read by humans while also making the image easier for the computer to handle. In our earlier experiments we had noticed that the encoding of printed matter was often very poor. This was especially noticeable when we enlarged an image. Rather than each character having smooth edges as on the original document, the edges were very rough, unexpected notches and excrescences being caused by the facsimile scanner. They not only degrade the image quality but also decrease the compression efficiency. A typical enlargement of several characters is shown in Fig. 5. - 11 -UCL FACSIMILE SYSTEM INDRA Note 1185 Fig 5. An enlargement of an typed text The enhancement method we adopted was first employed at Loughborough University [5]. This method has the effect of smoothing the edges of the dark areas on the image. The technique consists of considering each dot in the image in turn. The dot is either left as it is - 12 -UCL FACSIMILE SYSTEM INDRA Note 1185 or changed to the opposite colour (white to black or black to white) depending upon the eight dots that surround it. The particular pattern of surrounding dots that are required to change the inner dot's colour is used to control the harshness of the algorithm [6], [8]. In our first set of experiments the result was definitely worse than the original. Although square- like characters such as H, L, and T came out very well, anything with slope (M, V, W, or S) became so bad that the oblique contours were stepped. The method was subsequently modified to produce a result that was far more acceptable; the image looked a lot cleaner than the original. Fig. 6 shows the same text as that in Fig. 5, but after it has been cleaned. - 13 -UCL FACSIMILE SYSTEM INDRA Note 1185 Fig. 6 A cleaned text The effect of these can be difficult to see clearly. We have used the colour on our Grinnell display to show the original picture and the outcome of various picture processing operations superposed in different colours. This brings out the effect of the operations very - 14 -UCL FACSIMILE SYSTEM INDRA Note 1185 vividly. It was mentioned above that the enhancement was done not only to improve the image for reading but also for easier processing by the computer. As described earlier, the image from the facsimile machine is compressed in order to reduce the amount of data. The cleaning allows a higher compression rate so that more efficient transmission and/or storage can be achieved. We learned some important lessons from the enhancement exercise. Originally we thought that the main attraction in enhancement would be to improve the readability. In the end, we found that improving the readability was very difficult, especially because the facsimile image was so poor. Instead we found that the effect of reducing the compressed output was more important. By reducing the data to be transmitted by a quarter, significant savings could be made. But before such a technique could be used in a live system, the time it takes to produce the enhancement must be weighed against the time that would be saved in transmission. 2.4 Image Editing By editing we mean that the facsimile picture can be changed, or combined with other pictures, while it is stored inside the computer. In previous sections it was mentioned that we could change the size and shape of a facsimile image. This technique was later combined with an overlaying method that enabled one picture to be combined with another [12]. In order to perform any editing it is necessary to have the picture displayed for the user to see. In our case we displayed the picture on the bit-map screen. The image took up the left-hand side of the screen, the right side being reserved for the picture that was being built. The user could select an area of the left-hand screen and move it to a position on the right-hand screen. Several images could be displayed in succession on the left, and areas selected and moved to the right. Finally, the right-hand screen could be printed on the facsimile machine. The selection of an area of the picture was done by the use of a coloured rectangular subsection, controlled by a program in the computer, that could be moved around on the screen. The rectangular subsection - 15 -UCL FACSIMILE SYSTEM INDRA Note 1185 was moved with instructions typed in by the operator; it could be moved up or down, and increased or decreased in size. When the appropriate area of the screen had been selected, the program remembered the coordinates and moved the coloured rectangular subsection to the right-hand side of the screen. The user then selected an area again, in a similar manner. When the user finished the editing, the program removed the part of the picture selected from the left-hand screen and converted it to fit the shape of the rectangular subsection on the right-hand screen. The result was then displayed for the user to see. When an image was being edited, the editor had to keep another scaled copy for display. This is due to the fact that the screen had a different dimension to that of the facsimile machine. The editing operations, e.g. chopping and merging, were performed on the original image data files with the full resolution available on the facsimile machine. 2.5 Integration with Other Data Types The facsimile machine can be viewed in a wider context than merely a facsimile input/output device. It can work as a printer for other data representation types, such as coded character text and geometric graphics. At present, text can be converted into facsimile format and printed on the facsimile machine. Moreover, mixed pages containing pictures and text can be manipulated by our system. The integration of facsimile images with geometric graphics is a topic of future research. In order to convert a character string into its
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -