📄 rfc922.txt
字号:
RFC 922 October 1984Broadcasting Internet Datagrams in the Presence of Subnets 6.2. Multi-subnet broadcasts When a gateway receives a broadcast meant for all subnets of an IP network, it must use the Reverse Path Forwarding algorithm to decide what to do. The method is simple: the gateway should forward copies of the datagram along all connected links, if and only if the datagram arrived on the link which is part of the best route between the gateway and the source of the datagram. Otherwise, the datagram should be discarded. This algorithm may be improved if some or all of the gateways exchange among themselves additional information; this can be done transparently from the point of view of other hosts and even other gateways. See [4, 3] for details. 6.3. Pseudo-Algol Routing Algorithm This is a pseudo-Algol description of the routing algorithm a gateway should use. The algorithm is shown in figure 1. Some definitions are: RouteLink(host) A function taking a host address as a parameter and returning the first-hop link from the gateway to the host. RouteHost(host) As above but returns the first-hop host address. ResolveAddress(host) Returns the hardware address for an IP host. IncomingLink The link on which the packet arrived. OutgoingLinkSet The set of links on which the packet should be sent. OutgoingHardwareHost The hardware host address to send the packet to.Mogul [Page 7]RFC 922 October 1984Broadcasting Internet Datagrams in the Presence of Subnets Destination.host The host-part of the destination address. Destination.subnet The subnet-part of the destination address. Destination.ipnet The IP-network-part of the destination address.Mogul [Page 8]RFC 922 October 1984Broadcasting Internet Datagrams in the Presence of SubnetsBEGIN IF Destination.ipnet IN AllLinks THEN BEGIN IF IsSubnetted(Destination.ipnet) THEN BEGIN IF Destination.subnet = BroadcastSubnet THEN BEGIN /* use Reverse Path Forwarding algorithm */ IF IncomingLink = RouteLink(Source) THEN BEGIN IF Destination.host = BroadcastHost THEN OutgoingLinkSet <- AllLinks - IncomingLink; OutgoingHost <- BroadcastHost; Examine packet for possible internal use; END ELSE /* duplicate from another gateway, discard */ Discard; END ELSE IF Destination.subnet = IncomingLink.subnet THEN BEGIN /* forwarding would cause a loop */ IF Destination.host = BroadcastHost THEN Examine packet for possible internal use; Discard; END ELSE BEGIN /* forward to (possibly local) subnet */ OutgoingLinkSet <- RouteLink(Destination); OutgoingHost <- RouteHost(Destination); END END ELSE BEGIN /* destined for one of our local networks */ IF Destination.ipnet = IncomingLink.ipnet THEN BEGIN /* forwarding would cause a loop */ IF Destination.host = BroadcastHost THEN Examine packet for possible internal use; Discard; END ELSE BEGIN /* might be a broadcast */ OutgoingLinkSet <- RouteLink(Destination); OutgoingHost <- RouteHost(Destination); END END END ELSE BEGIN /* forward to a non-local IP network */ OutgoingLinkSet <- RouteLink(Destination); OutgoingHost <- RouteHost(Destination); END OutgoingHardwareHost <- ResolveAddress(OutgoingHost);ENDFigure 1: Pseudo-Algol algorithm for routing broadcasts by gatewaysMogul [Page 9]RFC 922 October 1984Broadcasting Internet Datagrams in the Presence of Subnets7. Broadcast IP Addressing - Conventions If different IP implementations are to be compatible, there must be convention distinguished number to denote "all hosts" and "all subnets". Since the local network layer can always map an IP address into data link layer address, the choice of an IP "broadcast host number" is somewhat arbitrary. For simplicity, it should be one not likely to be assigned to a real host. The number whose bits are all ones has this property; this assignment was first proposed in [6]. In the few cases where a host has been assigned an address with a host-number part of all ones, it does not seem onerous to require renumbering. The "all subnets" number is also all ones; this means that a host wishing to broadcast to all hosts on a remote IP network need not know how the destination address is divided up into subnet and host fields, or if it is even divided at all. For example, 36.255.255.255 may denote all the hosts on a single hardware network, or all the hosts on a subnetted IP network with 1 byte of subnet field and 2 bytes of host field, or any other possible division. The address 255.255.255.255 denotes a broadcast on a local hardware network that must not be forwarded. This address may be used, for example, by hosts that do not know their network number and are asking some server for it. Thus, a host on net 36, for example, may: - broadcast to all of its immediate neighbors by using 255.255.255.255 - broadcast to all of net 36 by using 36.255.255.255 without knowing if the net is subnetted; if it is not, then both addresses have the same effect. A robust application might try the former address, and if no response is received, then try the latter. See [1] for a discussion of such "expanding ring search" techniques. If the use of "all ones" in a field of an IP address means "broadcast", using "all zeros" could be viewed as meaning "unspecified". There is probably no reason for such addresses to appear anywhere but as the source address of an ICMP Information Request datagram. However, as a notational convention, we refer to networks (as opposed to hosts) by using addresses with zero fields. For example, 36.0.0.0 means "network number 36" while 36.255.255.255 means "all hosts on network number 36".Mogul [Page 10]RFC 922 October 1984Broadcasting Internet Datagrams in the Presence of Subnets 7.1. ARP Servers and Broadcasts The Address Resolution Protocol (ARP) described in [11] can, if incorrectly implemented, cause problems when broadcasts are used on a network where not all hosts share an understanding of what a broadcast address is. The temptation exists to modify the ARP server so that it provides the mapping between an IP broadcast address and the hardware broadcast address. This temptation must be resisted. An ARP server should never respond to a request whose target is a broadcast address. Such a request can only come from a host that does not recognize the broadcast address as such, and so honoring it would almost certainly lead to a forwarding loop. If there are N such hosts on the physical network that do not recognize this address as a broadcast, then a datagram sent with a Time-To-Live of T could potentially give rise to T**N spurious re-broadcasts.8. References 1. David Reeves Boggs. Internet Broadcasting. Ph.D. Th., Stanford University, January 1982. 2. D.D. Clark, K.T. Pogran, and D.P. Reed. "An Introduction to Local Area Networks". Proc. IEEE 66, 11, pp1497-1516, November 1978. 3. Yogan Kantilal Dalal. Broadcast Protocols in Packet Switched Computer Networks. Ph.D. Th., Stanford University, April 1977. 4. Yogan K. Dalal and Robert M. Metcalfe. "Reverse Path Forwarding of Broadcast Packets". Comm. ACM 21, 12, pp1040-1048, December 1978. 5. The Ethernet, A Local Area Network: Data Link Layer and Physical Layer Specifications. Version 1.0, Digital Equipment Corporation, Intel, Xerox, September 1980. 6. Robert Gurwitz and Robert Hinden. IP - Local Area Network Addressing Issues. IEN-212, BBN, September 1982. 7. R.M. Metcalfe and D.R. Boggs. "Ethernet: Distributed Packet Switching for Local Computer Networks". Comm. ACM 19, 7, pp395-404, July 1976. Also CSL-75-7, Xerox Palo Alto Research Center, reprinted in CSL-80-2.Mogul [Page 11]RFC 922 October 1984Broadcasting Internet Datagrams in the Presence of Subnets 8. Jeffrey Mogul. Internet Subnets. RFC-917, Stanford University, October 1984. 9. David A. Moon. Chaosnet. A.I. Memo 628, Massachusetts Institute of Technology Artificial Intelligence Laboratory, June 1981. 10. William W. Plummer. Internet Broadcast Protocols. IEN-10, BBN, March 1977. 11. David Plummer. An Ethernet Address Resolution Protocol. RFC-826, Symbolics, September 1982. 12. Jon Postel. Internet Protocol. RFC-791, ISI, September 1981. 13. David W. Wall. Mechanisms for Broadcast and Selective Broadcast. Ph.D. Th., Stanford University, June 1980. 14. David W. Wall and Susan S. Owicki. Center-based Broadcasting. Computer Systems Lab Technical Report TR189, Stanford University, June 1980.Mogul [Page 12]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -