📄 rfc975.txt
字号:
RFC 975 February 1986Autonomous Confederations that system is entitled to list all directly reachable networks in EGP messages sent to any other system. In general, it may happen that a particular network is directly reachable from more than one system. A network is "reachable" from an autonomous system if it is directly reachable from an autonomous system belonging to the same confederation. A directly reachable net is always reachable from the same system. Every gateway in that confederation is entitled to list all reachable nets in EGP messages sent to any other system. It may happen that a particular net is either directly reachable or reachable from different confederations. In order to preserve global routing stability in the Internet, it is explicitly assumed that routes within an autonomous system to a directly reachable net are always preferred over routes outside that system and that routes within an autonomous confederation are always preferred over routes outside that confederation. The mechanism by which this is assured is described in the next section. In general, EGP Update messages can include two lists of gateways, one for those gateways belonging to the same system (internal neighbors) and the other for gateways belonging to different systems (external neighbors). Directly reachable nets must always be associated with gateways of the same system, that is, with internal neighbors, while non-directly reachable nets can be associated with either internal or external neighbors. Nets that are reachable, but not directly reachable, must always be associated with gateways of the same confederation. 2.2. Trusted Routing Metrics There seems to be a general principle which characterizes distributed systems: The "nearer" a thing is the more dynamic and trustable it is, while the "farther" a thing is the more static and suspicious it is. For instance, the concept of network is intrinsic to the Internet model, as is the concept of gateways which bind them together. A cluster of gateways "near" each other (e.g. within an autonomous system) typically exchange routing information using a high-performance routing algorithm capable of sensitive monitoring of, and rapid adaptation to, changing performance indicators such as queueing delays and link loading. However, clusters of gateways "far" from each other (e.g. widely separated autonomous systems) usually need only coarse routing information, possibly only "hints" on the best likely next hop toMills [Page 6]RFC 975 February 1986Autonomous Confederations the general destination area. On the other hand, mutual suspicion increases with distance, so these clusters may need elaborate security considerations, including peer authentication, confidentiality, secrecy and signature verification. In addition, considerations of efficiency usually dictate that the allowable network bandidth consumed by the routing protocol itself decreases with distance. The price paid for both of these things typically is in responsiveness, with the effect that the more distant clusters are from each other, the less dynamic is the routing algorithm. The above observations suggest a starting point for the evolution of a globally acceptable routing metric. Assume the metric is represented by an integer, with low values representing finer distinctions "nearer" the gateway and high values coarser distinctions "farther" from it. Values less than a globally agreed constant X are associated with paths confined to the same autonomous system as the sender, values greater than X but less than another constant Y with paths confined to the autonomous confederation of the sender and values greater than Y associated with the remaining paths. At each of these three levels - autonomous system, autonomous confederation and universe of confederations - multiple routing algorithms could be operated simultaneously, with each producing for each destination net a possibly different subtree and metric in the ranges specified above. However, within each system the metric must have the same interpretation, so that other systems can mitigate routes between multiple gateways in that system. Likewise, within each confederation the metric must have the same interpretation, so that other confederations can mitigate routes to gateways in that confederation. Although all confederations must agree on a common universe-of-confederations algorithm, not all confederations need to use the same confederation-level algorithm and not all systems in the same confederation need to use the same system-level algorithm.3. Implementation Issues The manner in which the eight-bit "hop count" or distance field in the EGP Update to be used is not specified in RFC-904, but left as a matter for further study. The above model provides both an interpretation of this field, as well as hints on how to design appropriate routing algorithms. For the sake of illustration, assume the values of X and Y above are 128 and 192 respectively. This means that the gateways in aMills [Page 7]RFC 975 February 1986Autonomous Confederations particular system will assign distance values less than 128 for directly-reachable nets and that exterior gateways can compare these values freely in order to select among these gateways. It also means that the gateways in all systems of a particular confederation will assign distance values between 128 and 192 for those nets not directly reachable in the system but reachable in the confederation. In the following it will be assumed that the various confederations can be distinguished by some feature of the 16-bit system-number field, perhaps by reserving a subfield. 3.1. Data-Base Management Functions The following implementation model may clarify the above issues, as well as present at least one way to organize the gateway data base. The data base is organized as a routing table, the entries of which include a net number together with a list of items, where each item consists of (a) the gateway address, system number and distance provided by an EGP neighbor, (b) a time-to-live counter, local routing information and other information as necessary to manage the data base. The routing table is updated each time an EGP Update message is received from a neighbor and possibly by other means, such as the system IGP. The message is first decoded into a list of quads consisting of a network number, gateway address, system number and distance. If the gateway address is internal to the neighbor system, as determined from the EGP message, the system number of the quad is set to that system; while, if not, the system number is set to zero, indicating "external." Next, a new value of distance is computed from the old value provided in the message and subject to the following constraints: If the system number matches the local system number, the new value is determined by the rules for the system IGP but must be less than 128. If not and either the system number belongs to the same confederation or the system number is zero and the old distance is less than 192, the value is determined by the rules for the confederation EGP, but must be at least 128 and less than 192. Otherwise, the value is determined by the rules for the (global) universe-of-federations EGP, but must be at least 192. For each quad in the list the routing table is first searched for matching net number and a new entry made if not already there. Next, the list of items for that net number is searched for matching gateway address and system number and a new entry made if not already there. Finally, the distance field is recomputed, the time-to-live field reset and local routing information inserted.Mills [Page 8]RFC 975 February 1986Autonomous Confederations The time-to-live fields of all items in each list are incremented on a regular basis. If a field exceeds a preset maximum, the item is discarded; while, if all items on a list are discarded, the entire entry including net number is discarded. When a gateway sends an EGP Update message to a neighbor, it must invert the data base in order by gateway address, rather than net number. As part of this process the routing table is scanned and the gateway with minimum distance selected for each net number. The resulting list is sorted by gateway address and partitioned on the basis of internal/external system number. 3.2. Routing Functions A gateway encountering a datagram (service unit) searches the routing table for matching destination net number and then selects the gateway on that list with minimum distance. As the result of the value assignments above, it should be clear that routes at a higher level will never be chosen if routes at a lower level exist. It should also be clear that route selection within a system cannot affect route selection outside that system, except through the intervention of the intra-confederation routing algorithm. If a simple min-system-hop algorithm is used for the confederation EGP, the IGP of each system can influence it only to the extent of reachability. 3.3. Compatibility Issues The proposed interpretation is backwards-compatibile with known EGP implementations which do not interpret the distance field and with several known EGP implementations that take private liberties with this field. Perhaps the simplest way to evolve the present system is to collect the existing implementations that do not interpet the distance field at all as a single confederation with the present core system and routing restrictions. All distances provided by this confederation would be assumed equal to 192, which would provide at least a rudimentary capability for routing within the universe of confederations. One or more existing or proposed systems in which the distance field has a uniform interpretation throughout the system can be organized as autonomous confederations. This might include the Butterfly gateways now now being deployed, as well as clones elsewhere. These systems provide the capability to select routes into the system based on the distance fields for the different gateways. It is anticipated that the distance fields for the Butterfly system can be set to at least 128 if the routingMills [Page 9]RFC 975 February 1986Autonomous Confederations information comes from another Butterfly system and to at least 192 if from a non-Butterfly system presumed outside the confederation. New systems using an implmentation model such as suggested above can select routes into a confederation based on the distance field. For this to work properly, however, it is necessary that all systems and confederations adopt a consistent interpretation of distance values exceeding 192.4. Summary and Conclusions Taken at face value, this document represents a proposal for an interpretation of the distance field of the EGP Update message, which has previously been assigned no architected interpretation, but has been often used informally. The proposal amounts to ordering the autonomous systems in a hierarchy of systems and confederations, together with an interpretation of the distance field as a three-level metric. The result is to create a corresponding three-level routing community, one prefering routes inside a system, a second preferring routes inside a confederation and the third with no preference. While the proposed three-level hierarchy can readily be extended to any number of levels, this would create strain on the distance field, which is limited to eight bits in the current EGP model. The concept of distance can easily be generalized to "administrative distance" as suggested by John Nagle and others.5. References [1] Rosen, E., Exterior Gateway Protocol (EGP), DARPA Network Working Group Report RFC-827, Bolt Beranek and Newman, September 1982. [2] Seamonson, L.J., and E.C., Rosen. "STUB" Exterior Gateway Protocol, DARPA Network Working Group Report RFC-888, BBN Communications, January 1984. [3] Mills, D.L., Exterior Gateway Protocol Formal Specification, DARPA Network Working Group Report RFC-904, M/A-COM Linkabit, April 1984.Mills [Page 10]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -