📄 rfc819.txt
字号:
Network Working Group Zaw-Sing Su (SRI)Request for Comments: 819 Jon Postel (ISI) August 1982 The Domain Naming Convention for Internet User Applications1. Introduction For many years, the naming convention "<user>@<host>" has served the ARPANET user community for its mail system, and the substring "<host>" has been used for other applications such as file transfer (FTP) and terminal access (Telnet). With the advent of network interconnection, this naming convention needs to be generalized to accommodate internetworking. A decision has recently been reached to replace the simple name field, "<host>", by a composite name field, "<domain>" [2]. This note is an attempt to clarify this generalized naming convention, the Internet Naming Convention, and to explore the implications of its adoption for Internet name service and user applications. The following example illustrates the changes in naming convention: ARPANET Convention: Fred@ISIF Internet Convention: Fred@F.ISI.ARPA The intent is that the Internet names be used to form a tree-structured administrative dependent, rather than a strictly topology dependent, hierarchy. The left-to-right string of name components proceeds from the most specific to the most general, that is, the root of the tree, the administrative universe, is on the right. The name service for realizing the Internet naming convention is assumed to be application independent. It is not a part of any particular application, but rather an independent name service serves different user applications.2. The Structural Model The Internet naming convention is based on the domain concept. The name of a domain consists of a concatenation of one or more <simple names>. A domain can be considered as a region of jurisdiction for name assignment and of responsibility for name-to-address translation. The set of domains forms a hierarchy. Using a graph theory representation, this hierarchy may be modeled as a directed graph. A directed graph consists of a set of nodes and aSu & Postel [Page 1]RFC 819 August 1982; collection of arcs, where arcs are identified by ordered pairs of distinct nodes [1]. Each node of the graph represents a domain. An ordered pair (B, A), an arc from B to A, indicates that B is a subdomain of domain A, and B is a simple name unique within A. We will refer to B as a child of A, and A a parent of B. The directed graph that best describes the naming hierarchy is called an "in-tree", which is a rooted tree with all arcs directed towards the root (Figure 1). The root of the tree represents the naming universe, ancestor of all domains. Endpoints (or leaves) of the tree are the lowest-level domains. U / | \ / | \ U -- Naming Universe ^ ^ ^ I -- Intermediate Domain | | | E -- Endpoint Domain I E I / \ | ^ ^ ^ | | | E E I / | \ ^ ^ ^ | | | E E E Figure 1 The In-Tree Model for Domain Hierarchy The simple name of a child in this model is necessarily unique within its parent domain. Since the simple name of the child's parent is unique within the child's grandparent domain, the child can be uniquely named in its grandparent domain by the concatenation of its simple name followed by its parent's simple name. For example, if the simple name of a child is "C1" then no other child of the same parent may be named "C1". Further, if the parent of this child is named "P1", then "P1" is a unique simple name in the child's grandparent domain. Thus, the concatenation C1.P1 is unique in C1's grandparent domain. Similarly, each element of the hierarchy is uniquely named in the universe by its complete name, the concatenation of its simple name and those for the domains along the trail leading to the naming universe. The hierarchical structure of the Internet naming convention supports decentralization of naming authority and distribution of name service capability. We assume a naming authority and a name serverSu & Postel [Page 2]RFC 819 August 1982; associated with each domain. In Sections 5 and 6 respectively the name service and the naming authority are discussed. Within an endpoint domain, unique names are assigned to <user> representing user mailboxes. User mailboxes may be viewed as children of their respective domains. In reality, anomalies may exist violating the in-tree model of naming hierarchy. Overlapping domains imply multiple parentage, i.e., an entity of the naming hierarchy being a child of more than one domain. It is conceivable that ISI can be a member of the ARPA domain as well as a member of the USC domain (Figure 2). Such a relation constitutes an anomaly to the rule of one-connectivity between any two points of a tree. The common child and the sub-tree below it become descendants of both parent domains. U / | \ / . \ . . ARPA . . | \ USC | \ \ | . \ | . ISI Figure 2 Anomaly in the In-Tree Model Some issues resulting from multiple parentage are addressed in Appendix B. The general implications of multiple parentage are a subject for further investigation.3. Advantage of Absolute Naming Absolute naming implies that the (complete) names are assigned with respect to a universal reference point. The advantage of absolute naming is that a name thus assigned can be universally interpreted with respect to the universal reference point. The Internet naming convention provides absolute naming with the naming universe as its universal reference point. For relative naming, an entity is named depending upon the position of the naming entity relative to that of the named entity. A set of hosts running the "unix" operating system exchange mail using a method called "uucp". The naming convention employed by uucp is an example of relative naming. The mail recipient is typically named by a source route identifying a chain of locally known hosts linking theSu & Postel [Page 3]RFC 819 August 1982; sender's host to the recipient's. A destination name can be, for example, "alpha!beta!gamma!john", where "alpha" is presumably known to the originating host, "beta" is known to "alpha", and so on. The uucp mail system has demonstrated many of the problems inherent to relative naming. When the host names are only locally interpretable, routing optimization becomes impossible. A reply message may have to traverse the reverse route to the original sender in order to be forwarded to other parties. Furthermore, if a message is forwarded by one of the original recipients or passed on as the text of another message, the frame of reference of the relative source route can be completely lost. Such relative naming schemes have severe problems for many of the uses that we depend upon in the ARPA Internet community.4. Interoperability To allow interoperation with a different naming convention, the names assigned by a foreign naming convention need to be accommodated. Given the autonomous nature of domains, a foreign naming environment may be incorporated as a domain anywhere in the hierarchy. Within the naming universe, the name service for a domain is provided within that domain. Thus, a foreign naming convention can be independent of the Internet naming convention. What is implied here is that no standard convention for naming needs to be imposed to allow interoperations among heterogeneous naming environments. For example: There might be a naming convention, say, in the FOO world, something like "<user>%<host>%<area>". Communications with an entity in that environment can be achieved from the Internet community by simply appending ".FOO" on the end of the name in that foreign convention. John%ISI-Tops20-7%California.FOO Another example: One way of accommodating the "uucp world" described in the last section is to declare it as a foreign system. Thus, a uucp name "alpha!beta!gamma!john"Su & Postel [Page 4]RFC 819 August 1982; might be known in the Internet community as "alpha!beta!gamma!john.UUCP". Communicating with a complex subdomain is another case which can be treated as interoperation. A complex subdomain is a domain with complex internal naming structure presumably unknown to the outside world (or the outside world does not care to be concerned with its complexity). For the mail system application, the names embedded in the message text are often used by the destination for such purpose as to reply to the original message. Thus, the embedded names may need to be converted for the benefit of the name server in the destination environment. Conversion of names on the boundary between heterogeneous naming environments is a complex subject. The following example illustrates some of the involved issues. For example: A message is sent from the Internet community to the FOO environment. It may bear the "From" and "To" fields as: From: Fred@F.ISI.ARPA To: John%ISI-Tops20-7%California.FOO where "FOO" is a domain independent of the Internet naming environment. The interface on the boundary of the two environments may be represented by a software module. We may assume this interface to be an entity of the Internet community as well as an entity of the FOO community. For the benefit of the FOO environment, the "From" and "To" fields need to be modified upon the message's arrival at the boundary. One may view naming as a separate layer of protocol, and treat conversion as a protocol translation. The matter is complicated when the message is sent to more than one destination within different naming environments; or the message is destined within an environment not sharing boundary with the originating naming environment. While the general subject concerning conversion is beyond the scope of this note, a few questions are raised in Appendix D.Su & Postel [Page 5]RFC 819 August 1982;5. Name Service Name service is a network service providing name-to-address translation. Such service may be achieved in a number of ways. For a simple networking environment, it can be accomplished with a single central database containing name-to-address correspondence for all the pertinent network entities, such as hosts. In the case of the old ARPANET host names, a central database is duplicated in each individual host. The originating module of an application process would query the local name service (e.g., make a system call) to obtain network address for the destination host. With the proliferation of networks and an accelerating increase in the number of hosts participating in networking, the ever growing size, update frequency, and the dissemination of the central database makes this approach unmanageable. The hierarchical structure of the Internet naming convention supports decentralization of naming authority and distribution of name service capability. It readily accommodates growth of the naming universe. It allows an arbitrary number of hierarchical layers. The addition of a new domain adds little complexity to an existing Internet system. The name service at each domain is assumed to be provided by one or more name servers. There are two models for how a name server completes its work, these might be called "iterative" and "recursive". For an iterative name server there may be two kinds of responses. The first kind of response is a destination address. The second kind of response is the address of another name server. If the response is a destination address, then the query is satisfied. If the response is the address of another name server, then the query must be repeated using that name server, and so on until a destination address is obtained. For a recursive name server there is only one kind of response -- a destination address. This puts an obligation on the name server to actually make the call on another name server if it can't answer the query itself. It is noted that looping can be avoided since the names presented for translation can only be of finite concatenation. However, care should be taken in employing mechanisms such as a pointer to the next simple name for resolution. We believe that some name servers will be recursive, but we don't believe that all will be. This means that the caller must beSu & Postel [Page 6]
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -