📄 rfc926.txt
字号:
ISO DIS 8473 (May 1984) [Page 28]RFC 926 December 1984 6.16 Quality of Service Maintenance Function In order to support the Quality of Service requested by Network Service users, the Protocol may need to make QOS information available at intermediate systems. This information may be used by network entities in intermediate systems to make routing decisions where such decisions affect the overall QOS provided to NS users. In those instances where the QOS indicated cannot be maintained, the NS provider will attempt to deliver the PDU at a QOS less than that indicated. The NS provider will not necessarily provide a notification of failure to meet the indicated quality of service. 6.17 Classification of Functions Implementations do not have to support all of the functions described in Section 6. Functions are divided into three categories: Type 1: These functions must be supported. Type 2: These functions may or may not be supported. If an implementation does not support a Type 2 function, and the function is selected by a PDU, then the PDU shall be discarded, and an Error Report PDU shall be generated and forwarded to the originating network-entity, providing that the Error Report flag is set. Type 3: These functions may or may not be supported. If an implementation does not support a Type 3 function, and the function is selected by a PDU, then the function is not performed and the PDU is processed exactly as though the function was not selected. The protocol data unit shall not be discarded. Table 6-1 shows how the functions are divided into these three categories:ISO DIS 8473 (May 1984) [Page 29]RFC 926 December 1984 +---------------------------------------------------+ | Function | Type | |--------------------------------|------------------| | | | | PDU Composition | 1 | | PDU Decomposition | 1 | | Header Format Analysis | 1 | | PDU Lifetime Control | 1 | | Route PDU | 1 | | Forward PDU | 1 | | Segment PDU | 1 | | Reassemble PDU | 1 | | Discard PDU | 1 | | Error Reporting | 1 (note 1) | | PDU Header Error Detection | 1 (note 1) | | Padding | 1 (notes 1 2) | | Security | 2 | | Complete Source Routing | 2 | | Partial Source Routing | 3 | | Priority | 3 | | Record Route | 3 | | Quality of Service Maintenance | 3 | +---------------------------------------------------+ Table 6-1. Categorization of Protocol FunctionsISO DIS 8473 (May 1984) [Page 30]RFC 926 December 1984 Notes: 1) While the Padding, Error Reporting, and Header Error Detection functions must be provided, they are provided only when selected by the sending Network Service user. 2) The correct treatment of the Padding function involves no processing. Therefore, this could equally be described as a Type 3 function. 3) The rationale for the inclusion of type 3 functions is that in the case of some functions it is more important to forward the PDUs between intermediate systems or deliver them to an end-system than it is to support the functions. Type 3 functions should be used in those cases where they are of an advisory nature and should not be the cause of the discarding of a PDU when not supported.ISO DIS 8473 (May 1984) [Page 31]RFC 926 December 19847 STRUCTURE AND ENCODING OF PDUS 7.1 Structure All Protocol Data Units shall contain an integral number of octets. The octets in a PDU are numbered starting from one (1) and increasing in the order in which they are put into an SNSDU. The bits in an octet are numbered from one (1) to eight (8), where bit one (1) is the low-order bit. When consecutive octets are used to represent a binary number, the lower octet number has the most significant value. Any subnetwork supporting this protocol is required to state in its specification the way octets are transferred, using the terms "most significant bit" and "least significant bit." The PDUs of this protocol are defined using the terms "most significant bit" and "least significant bit." Note: When the encoding of a PDU is represented using a diagram in this section, the following representation is used: a) octets are shown with the lowest numbered octet to the left, higher number octets being further to the right; b) within an octet, bits are shown with bit eight (8) to the left and bit one (1) to the right. PDUs shall contain, in the following order: 1) the header, comprising: a) the fixed part; b) the address part; c) the segmentation part, if present; d) the options part, if present andISO DIS 8473 (May 1984) [Page 32]RFC 926 December 1984 2) the data field, if present. This structure is illustrated below: Part: Described in: +-------------------+ | Fixed Part | Section 7.2 +-------------------+ +-------------------+ | Address Part | Section 7.3 +-------------------+ +-------------------+ | Segmentation Part | Section 7.4 +-------------------+ +-------------------+ | Options Part | Section 7.5 +-------------------+ +-------------------+ | Data | Section 7.6 +-------------------+ Figure 7-1. PDU StructureISO DIS 8473 (May 1984) [Page 33]RFC 926 December 1984 7.2 Fixed Part 7.2.1 General The fixed part contains frequently occuring parameters including the type code (DT or ER) of the protocol data unit. The length and the structure of the fixed part are defined by the PDU code. The fixed part has the following format: Octet +------------------------------------+ | Network Layer Protocol Identifier | 1 |------------------------------------| | Length Indicator | 2 |------------------------------------| | Version/Protocol Id Extension | 3 |------------------------------------| | Lifetime | 4 |------------------------------------| |S |M |E/R| Type | 5 | P| S| | | |------------------------------------| | Segment Length | 6,7 |------------------------------------| | Checksum | 8,9 +------------------------------------+ Figure 7-2. PDU Header--Fixed Part 7.2.2 Network Layer Protocol Identifier The value of this field shall be binary 1000 0001. This field identifies this Network Layer Protocol as ISO 8473, Protocol for Providing the Connectionless-mode Network Service.ISO DIS 8473 (May 1984) [Page 34]RFC 926 December 1984 7.2.3 Length Indicator The length is indicated by a binary number, with a maximum value of 254 (1111 1110). The length indicated is the length in octets of the header, as described in Section 7.1, Structure. The value 255 (1111 1111) is reserved for possible future extensions. Note: The rules for forwarding and segmentation ensure that the header length is the same for all segments (Derived PDUs) of the Initial PDU, and is the same as the header length of the Initial PDU. 7.2.4 Version/Protocol Identifier Extension The value of this field is binary 0000 0001. This Identifies a standard version of ISO 8473, Protocol for Providing the Connectionless-mode Network Service. 7.2.5 PDU Lifetime The Lifetime field is encoded as a binary number representing the remaining lifetime of the PDU, in units of 500 milliseconds. The Lifetime field is set by the originating network-entity, and is decremented by every network-entity which processes the PDU. The PDU shall be discarded if the value of the field reaches zero. When a network-entity processes a PDU, it decrements the Lifetime by at least one. The Lifetime shall be decremented by more than one if the sum of: 1) the transit delay in the subnetwork from which the PDU was received; andISO DIS 8473 (May 1984) [Page 35]RFC 926 December 1984 2) the delay within the system processing the PDU exceeds or is estimated to exceed 500 milliseconds. In this case, the lifetime field should be decremented by one for each additional 500 milliseconds of delay. The determination of delay need not be precise, but where error exists the value used shall be an overestimate, not an underestimate. If the Lifetime reaches a value of zero before the PDU is delivered to the destination, the PDU shall be discarded. The Error Reporting function shall be invoked, as described in Section 6.10, Error Reporting Function, and may result in the generation of an ER PDU. It is a local matter whether the destination network-entity performs the Lifetime Control function. When the Segmentation function is applied to a PDU, the Lifetime field is copied into all of the Derived PDUs. 7.2.6 Flags 7.2.6.1 Segmentation Permitted and More Segments Flags The Segmentation Permitted flag determines whether segmentation is permitted. A value of one indicates that segmentation is permitted. A value of zero indicates that the non-segmenting protocol subset is employed. Where this is the case, the segmentation part of the PDU header is not present, and the Segment Length field serves as the Total Length field. The More Segments flag indicates whether the data segment in this PDU contains (as its last octet) the last octet of the User Data in the NSDU. When the More Segments flag is set to one (1) then segmentation has taken place and the last octet of the NSDU is not contained in
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -