📄 pppcompress.c
字号:
/*- * Copyright (c) 1989 The Regents of the University of California. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)slcompress.c 7.7 (Berkeley) 5/7/91 *//* * Routines to compress and uncompess tcp packets (for transmission * over low speed serial lines. * * Van Jacobson (van@helios.ee.lbl.gov), Dec 31, 1989: * - Initial distribution. * * $Id: pppcompress.c,v 1.2 1996/05/24 07:04:14 paulus Exp $ */ #include <sys/types.h>#include <sys/param.h>#include <sys/systm.h>#include <sys/mbuf.h>#include <sys/socket.h>#include <sys/socketvar.h>#include <netinet/in.h>#include <netinet/in_systm.h>#include <netinet/ip.h>#include <netinet/tcp.h>#include <net/pppcompress.h>#ifndef SL_NO_STATS#define INCR(counter) ++comp->counter;#else#define INCR(counter)#endif#define BCMP(p1, p2, n) bcmp((char *)(p1), (char *)(p2), (int)(n))#define BCOPY(p1, p2, n) bcopy((char *)(p1), (char *)(p2), (int)(n))#ifndef KERNEL#define ovbcopy bcopy#endifvoidvj_compress_init(comp, max_state) struct vjcompress *comp; int max_state;{ register u_int i; register struct cstate *tstate = comp->tstate; if ((unsigned) max_state > MAX_STATES - 1) max_state = MAX_STATES - 1; bzero((char *)comp, sizeof(*comp)); for (i = max_state; i > 0; --i) { tstate[i].cs_id = i; tstate[i].cs_next = &tstate[i - 1]; } tstate[0].cs_next = &tstate[max_state]; tstate[0].cs_id = 0; comp->last_cs = &tstate[0]; comp->last_recv = 255; comp->last_xmit = 255; comp->flags = SLF_TOSS;}/* ENCODE encodes a number that is known to be non-zero. ENCODEZ * checks for zero (since zero has to be encoded in the long, 3 byte * form). */#define ENCODE(n) { \ if ((u_short)(n) >= 256) { \ *cp++ = 0; \ cp[1] = (n); \ cp[0] = (n) >> 8; \ cp += 2; \ } else { \ *cp++ = (n); \ } \}#define ENCODEZ(n) { \ if ((u_short)(n) >= 256 || (u_short)(n) == 0) { \ *cp++ = 0; \ cp[1] = (n); \ cp[0] = (n) >> 8; \ cp += 2; \ } else { \ *cp++ = (n); \ } \}#define DECODEL(f) { \ if (*cp == 0) {\ (f) = htonl(ntohl(f) + ((cp[1] << 8) | cp[2])); \ cp += 3; \ } else { \ (f) = htonl(ntohl(f) + (u_long)*cp++); \ } \}#define DECODES(f) { \ if (*cp == 0) {\ (f) = htons(ntohs(f) + ((cp[1] << 8) | cp[2])); \ cp += 3; \ } else { \ (f) = htons(ntohs(f) + (u_long)*cp++); \ } \}#define DECODEU(f) { \ if (*cp == 0) {\ (f) = htons((cp[1] << 8) | cp[2]); \ cp += 3; \ } else { \ (f) = htons((u_long)*cp++); \ } \}u_intvj_compress_tcp(m, ip, comp, compress_cid) struct mbuf *m; register struct ip *ip; struct vjcompress *comp; int compress_cid;{ register struct cstate *cs = comp->last_cs->cs_next; register u_int hlen = ip->ip_hl; register struct tcphdr *oth; register struct tcphdr *th; register u_int deltaS, deltaA; register u_int changes = 0; u_char new_seq[16]; register u_char *cp = new_seq; /* * Bail if this is an IP fragment or if the TCP packet isn't * `compressible' (i.e., ACK isn't set or some other control bit is * set). (We assume that the caller has already made sure the * packet is IP proto TCP). */ if ((ip->ip_off & htons(0x3fff)) || m->m_len < 40) return (TYPE_IP); th = (struct tcphdr *)&((int *)ip)[hlen]; if ((th->th_flags & (TH_SYN|TH_FIN|TH_RST|TH_ACK)) != TH_ACK) return (TYPE_IP); /* * Packet is compressible -- we're going to send either a * COMPRESSED_TCP or UNCOMPRESSED_TCP packet. Either way we need * to locate (or create) the connection state. Special case the * most recently used connection since it's most likely to be used * again & we don't have to do any reordering if it's used. */ INCR(sls_packets) if (ip->ip_src.s_addr != cs->cs_ip.ip_src.s_addr || ip->ip_dst.s_addr != cs->cs_ip.ip_dst.s_addr || *(int *)th != ((int *)&cs->cs_ip)[cs->cs_ip.ip_hl]) { /* * Wasn't the first -- search for it. * * States are kept in a circularly linked list with * last_cs pointing to the end of the list. The * list is kept in lru order by moving a state to the * head of the list whenever it is referenced. Since * the list is short and, empirically, the connection * we want is almost always near the front, we locate * states via linear search. If we don't find a state * for the datagram, the oldest state is (re-)used. */ register struct cstate *lcs; register struct cstate *lastcs = comp->last_cs; do { lcs = cs; cs = cs->cs_next; INCR(sls_searches) if (ip->ip_src.s_addr == cs->cs_ip.ip_src.s_addr && ip->ip_dst.s_addr == cs->cs_ip.ip_dst.s_addr && *(int *)th == ((int *)&cs->cs_ip)[cs->cs_ip.ip_hl]) goto found; } while (cs != lastcs); /* * Didn't find it -- re-use oldest cstate. Send an * uncompressed packet that tells the other side what * connection number we're using for this conversation. * Note that since the state list is circular, the oldest * state points to the newest and we only need to set * last_cs to update the lru linkage. */ INCR(sls_misses) comp->last_cs = lcs; hlen += th->th_off; hlen <<= 2; goto uncompressed; found: /* * Found it -- move to the front on the connection list. */ if (cs == lastcs) comp->last_cs = lcs; else { lcs->cs_next = cs->cs_next; cs->cs_next = lastcs->cs_next; lastcs->cs_next = cs; } } /* * Make sure that only what we expect to change changed. The first * line of the `if' checks the IP protocol version, header length & * type of service. The 2nd line checks the "Don't fragment" bit. * The 3rd line checks the time-to-live and protocol (the protocol * check is unnecessary but costless). The 4th line checks the TCP * header length. The 5th line checks IP options, if any. The 6th * line checks TCP options, if any. If any of these things are * different between the previous & current datagram, we send the * current datagram `uncompressed'. */ oth = (struct tcphdr *)&((int *)&cs->cs_ip)[hlen]; deltaS = hlen; hlen += th->th_off; hlen <<= 2; if (((u_short *)ip)[0] != ((u_short *)&cs->cs_ip)[0] || ((u_short *)ip)[3] != ((u_short *)&cs->cs_ip)[3] || ((u_short *)ip)[4] != ((u_short *)&cs->cs_ip)[4] || th->th_off != oth->th_off || (deltaS > 5 && BCMP(ip + 1, &cs->cs_ip + 1, (deltaS - 5) << 2)) || (th->th_off > 5 && BCMP(th + 1, oth + 1, (th->th_off - 5) << 2))) goto uncompressed; /* * Figure out which of the changing fields changed. The * receiver expects changes in the order: urgent, window, * ack, seq (the order minimizes the number of temporaries * needed in this section of code). */ if (th->th_flags & TH_URG) { deltaS = ntohs(th->th_urp); ENCODEZ(deltaS); changes |= NEW_U; } else if (th->th_urp != oth->th_urp) /* argh! URG not set but urp changed -- a sensible * implementation should never do this but RFC793 * doesn't prohibit the change so we have to deal * with it. */ goto uncompressed; if (deltaS = (u_short)(ntohs(th->th_win) - ntohs(oth->th_win))) { ENCODE(deltaS); changes |= NEW_W; } if (deltaA = ntohl(th->th_ack) - ntohl(oth->th_ack)) { if (deltaA > 0xffff) goto uncompressed; ENCODE(deltaA); changes |= NEW_A; } if (deltaS = ntohl(th->th_seq) - ntohl(oth->th_seq)) { if (deltaS > 0xffff) goto uncompressed; ENCODE(deltaS); changes |= NEW_S;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -