📄 idctmmx.c
字号:
//////////////////////////////////////////////////////////////////////
// not functional
//////////////////////////////////////////////////////////////////////
// MPEG2AVI
// --------
// v0.16B34
// performance optimization, idct_mmx32_rows() and idct_mmx32_cols() now
// transpose their respective outputs "in-place" (saves a bit of time)
//
// v0.16B33 initial release
//
// MMX32 iDCT algorithm (IEEE-1180 compliant) :: idct_mmx32()
//
// This IDCT implementation is based on Intel Application Note AP-922.
//
// This file implements the idct algorithm with no transpose.
// The other file (idctmm32_transpose.c) is faster, but transposes the
// output-matrix. (Intel's code-listing produces a transposed output.)
//
// ALGORITHM OVERVIEW
// ------------------
// This was one of the harder pieces of work to code.
// Intel's app-note focuses on the numerical theory/issues of the IDCT
// implementation, but assumes the programmer is familiar with the
// requisite mathematics, leaving the exact form of the complete IDCT
// code-listing up to the programmer's imagination.
//
// I played around with Intel's code-fragments for quite a few hours.
// This file is *A* working IDCT implementation, but it may not be
// the implementation Intel originally intended. Rest assured, I've
// done everything in my power to guarantee its correctness.
// This implementation passes all six IEEE accuracy tests by a fair margin.
//
// My IDCT algorithm consists of 4 steps:
//
// 1) IDCT-row transformation (using the IDCT-row function) on all 8 rows
// This yields an intermediate 8x8 matrix.
//
// 2) transpose of intermediate matrix (mandatory)
//
// 3) IDCT-row transformation (2nd time) on all 8 rows of the
// intermediate matrix.
// At this point, we have the final-result, in transposed form.
//
// 4) post-transformation matrix transpose
// (not necessary if the input-data is already transposed, this could
// be done during the MPEG "zig-zag" scan, but since my algorithm
// requires at least one transpose operation, why not re-use the
// transpose-code.)
//
// Although the (1st) and (3rd) steps use the same basic row-transform
// operation, the (3rd) step uses different shift&round constants
// (explained later.)
//
// Also note that the intermediate transpose (2) would not be neccessary,
// if the subsequent operation were a iDCT-column transformation. Since
// we only have the iDCT-row transform, we transpose the intermediate
// matrix and use the iDCT-row transform a 2nd time. I suppose one
// a faster (but more complicated) code-implementation is possible,
// if these steps were merged.
//
// I had to change some constants/variables for my method to work :
//
// As given by Intel, #SHIFT_INV_COL and #RND_INV_COL are wrong.
// Not surprising since I'm probably implementing the IDCT in
// perverse fashion.
// round_inv_col[], which is given as "4 short" values, should have the
// same dimensions as round_inv_row[]. The corrected variables are
// shown.
//
// Intel's code defines 4 tables of constants. My code only uses only
// one of these tables, row#0.
//
// IMPLEMENTATION DETAILs
// ----------------------
//
// I divided the 4-steps of my algorithm into two subroutines,
// 1) idct_mmx32_rows() - transforms 8 rows, then transpose
// 2) idct_mmx32_cols() - transforms 8 rows, then transpose
// yields final result ("drop-in" direct replacement for INT32 IDCT)
//
// idct_mmx32_cols() is a carbon-copy of idct_mmx32_rows(), i.e. both
// execute a row-by-row transformations. Only the shift&rounding
// coefficients differ.
//
// In the 1st function (rows), the shift & round instructions use
// SHIFT_INV_ROW & round_inv_row[] (renamed to r_inv_row[])
//
// In the 2nd function (cols)-> r_inv_col[], and
// SHIFT_INV_COL & round_inv_col[] (renamed to r_inv_col[])
//
// Each function contains an integrated transpose-operator, which comes
// AFTER the primary transformation operation. In the future, I'll optimize
// the code to do more of the transpose-work "in-place". Right now, I've
// left the code as two subroutines and a main calling function, so other
// people can read the code more easily.
//;=============================================================================
//;
//; AP-922 http://developer.intel.com/vtune/cbts/strmsimd
//; These examples contain code fragments for first stage iDCT 8x8
//; (for rows) and first stage DCT 8x8 (for columns)
//;
//;=============================================================================
#define BITS_INV_ACC 4 // 4 or 5 for IEEE
// 5 yields higher accuracy, but lessens dynamic range on the input matrix
#define SHIFT_INV_ROW (16 - BITS_INV_ACC)
#define SHIFT_INV_COL (1 + BITS_INV_ACC + 14)
#define RND_INV_ROW (1 << (SHIFT_INV_ROW-1))
#define RND_INV_COL (1 << (SHIFT_INV_COL-1))
#define RND_INV_CORR (RND_INV_COL - 1)
const static int r_inv_row[2] = { RND_INV_ROW, RND_INV_ROW};
const static int r_inv_col[2] = {RND_INV_COL, RND_INV_COL};
const static int r_inv_corr[2] = {RND_INV_CORR, RND_INV_CORR};
static const short tab_i_01234567[] = {
16384, 16384, 16384, -16384, 21407, 8867, 8867, -21407,
16384, -16384, 16384, 16384, -8867, 21407, -21407, -8867,
22725, 12873, 19266, -22725, 19266, 4520, -4520, -12873,
12873, 4520, 4520, 19266, -22725, 19266, -12873, -22725,
};
#define INP eax
#define OUT ecx
#define TABLE ebx
#define round_inv_row edx
#define round_inv_col edx
#define ROW_STRIDE 16
static __int64 qwTemp[32];
__forceinline static void idct_mmx32_rows(short *block);
__forceinline static void idct_mmx32_cols(short *block);
// public interface to MMX32 IDCT 8x8 operation
void MMX_IDCT(short *block)
{
idct_mmx32_rows(block);
idct_mmx32_cols(block);
}
static void idct_mmx32_rows(short *block)
{
__asm
{
mov INP, [block]
mov edi, 0x00
lea TABLE, [tab_i_01234567]
lea OUT, [qwTemp]
lea round_inv_row, [r_inv_row]
lpa:
movq mm0, [INP]
movq mm1, [INP+8]
movq mm2, mm0
movq mm3, [TABLE]
punpcklwd mm0, mm1
movq mm5, mm0
punpckldq mm0, mm0
movq mm4, [TABLE+8]
punpckhwd mm2, mm1
pmaddwd mm3, mm0
movq mm6, mm2
movq mm1, [TABLE+32]
punpckldq mm2, mm2
pmaddwd mm4, mm2
punpckhdq mm5, mm5
pmaddwd mm0, [TABLE+16]
punpckhdq mm6, mm6
movq mm7, [TABLE+40]
pmaddwd mm1, mm5
paddd mm3, [round_inv_row]
pmaddwd mm7, mm6
pmaddwd mm2, [TABLE+24]
paddd mm3, mm4
pmaddwd mm5, [TABLE+48]
movq mm4, mm3
pmaddwd mm6, [TABLE+56]
paddd mm1, mm7
paddd mm0, [round_inv_row]
psubd mm3, mm1
psrad mm3, SHIFT_INV_ROW
paddd mm1, mm4
paddd mm0, mm2
psrad mm1, SHIFT_INV_ROW
paddd mm5, mm6
movq mm4, mm0
paddd mm0, mm5
psubd mm4, mm5
add INP, 16
psrad mm4, SHIFT_INV_ROW
psrad mm0, SHIFT_INV_ROW
packssdw mm4, mm3
packssdw mm1, mm0
movq mm7, mm4
psrld mm4, 16
movq [OUT], mm1
pslld mm7, 16
por mm7, mm4
movq mm3, [TABLE]
movq [OUT+8], mm7
add edi, 0x01
add OUT, 16
cmp edi, 0x08
jl lpa
lea OUT, [qwTemp]
movq mm0, [OUT+ROW_STRIDE*0]
movq mm1, [OUT+ROW_STRIDE*1]
movq mm4, mm0
movq mm2, [OUT+ROW_STRIDE*2]
punpcklwd mm0, mm1
movq mm3, [OUT+ROW_STRIDE*3]
punpckhwd mm4, mm1
movq mm6, mm2
punpcklwd mm2, mm3
punpckhwd mm6, mm3
movq mm1, mm0
mov INP, [block]
punpckldq mm0, mm2
movq mm3, mm4
punpckhdq mm1, mm2
movq [INP+ROW_STRIDE*0], mm0
punpckldq mm4, mm6
movq mm0, [OUT+ROW_STRIDE*4+8]
punpckhdq mm3, mm6
movq [INP+ROW_STRIDE*2], mm4
movq mm4, mm0
movq [INP+ROW_STRIDE*1], mm1
movq mm1, [OUT+ROW_STRIDE*5+8]
movq [INP+ROW_STRIDE*3], mm3
punpcklwd mm0, mm1
movq mm2, [OUT+ROW_STRIDE*6+8]
punpckhwd mm4, mm1
movq mm3, [OUT+ROW_STRIDE*7+8]
movq mm6, mm2
punpcklwd mm2, mm3
movq mm1, mm0
punpckhwd mm6, mm3
movq mm3, mm4
punpckldq mm0, mm2
punpckhdq mm1, mm2
movq [INP+ROW_STRIDE*4+8], mm0
punpckldq mm4, mm6
movq mm0, [OUT+ROW_STRIDE*4]
punpckhdq mm3, mm6
movq [INP+ROW_STRIDE*6+8], mm4
movq mm4, mm0
movq [INP+ROW_STRIDE*5+8], mm1
movq mm1, [OUT+ROW_STRIDE*5]
movq [INP+ROW_STRIDE*7+8], mm3
punpcklwd mm0, mm1
movq mm2, [OUT+ROW_STRIDE*6]
punpckhwd mm4, mm1
movq mm3, [OUT+ROW_STRIDE*7]
movq mm6, mm2
punpcklwd mm2, mm3
movq mm1, mm0
punpckhwd mm6, mm3
movq mm3, mm4
punpckldq mm0, mm2
punpckhdq mm1, mm2
movq [INP+ROW_STRIDE*0+8], mm0
punpckldq mm4, mm6
movq mm0, [OUT+ROW_STRIDE*0+8]
punpckhdq mm3, mm6
movq [INP+ROW_STRIDE*2+8], mm4
movq mm4, mm0
movq [INP+ROW_STRIDE*1+8], mm1
movq mm1, [OUT+ROW_STRIDE*1+8]
movq [INP+ROW_STRIDE*3+8], mm3
punpcklwd mm0, mm1
movq mm2, [OUT+ROW_STRIDE*2+8]
punpckhwd mm4, mm1
movq mm3, [OUT+ROW_STRIDE*3+8]
movq mm6, mm2
punpcklwd mm2, mm3
movq mm1, mm0
punpckhwd mm6, mm3
movq mm3, mm4
punpckldq mm0, mm2
punpckhdq mm1, mm2
movq [INP+ROW_STRIDE*4], mm0
punpckldq mm4, mm6
movq [INP+ROW_STRIDE*5], mm1
punpckhdq mm3, mm6
movq [INP+ROW_STRIDE*6], mm4
movq [INP+ROW_STRIDE*7], mm3
}
}
static void idct_mmx32_cols(short *block)
{
__asm
{
mov INP, [block]
mov edi, 0x00
lea TABLE, [tab_i_01234567]
lea OUT, [qwTemp]
lea round_inv_col, [r_inv_col]
acc_idct_colloop1:
movq mm0, [INP]
movq mm1, [INP+8]
movq mm2, mm0
movq mm3, [TABLE]
punpcklwd mm0, mm1
movq mm5, mm0
punpckldq mm0, mm0
movq mm4, [TABLE+8]
punpckhwd mm2, mm1
pmaddwd mm3, mm0
movq mm6, mm2
movq mm1, [TABLE+32]
punpckldq mm2, mm2
pmaddwd mm4, mm2
punpckhdq mm5, mm5
pmaddwd mm0, [TABLE+16]
punpckhdq mm6, mm6
movq mm7, [TABLE+40]
pmaddwd mm1, mm5
paddd mm3, [round_inv_col]
pmaddwd mm7, mm6
pmaddwd mm2, [TABLE+24]
paddd mm3, mm4
pmaddwd mm5, [TABLE+48]
movq mm4, mm3
pmaddwd mm6, [TABLE+56]
paddd mm1, mm7
paddd mm0, [round_inv_col]
psubd mm3, mm1
psrad mm3, SHIFT_INV_COL
paddd mm1, mm4
paddd mm0, mm2
psrad mm1, SHIFT_INV_COL
paddd mm5, mm6
movq mm4, mm0
paddd mm0, mm5
psubd mm4, mm5
add INP, 16
psrad mm4, SHIFT_INV_COL
add TABLE, 0
psrad mm0, SHIFT_INV_COL
packssdw mm4, mm3
packssdw mm1, mm0
movq mm7, mm4
psrld mm4, 16
movq [OUT], mm1
pslld mm7, 16
por mm7, mm4
movq [OUT+8], mm7
add edi, 0x01
add OUT, 16
cmp edi, 0x08
jl acc_idct_colloop1
lea OUT, [qwTemp]
movq mm0, [OUT+ROW_STRIDE*0]
movq mm1, [OUT+ROW_STRIDE*1]
movq mm4, mm0
movq mm2, [OUT+ROW_STRIDE*2]
punpcklwd mm0, mm1
movq mm3, [OUT+ROW_STRIDE*3]
punpckhwd mm4, mm1
movq mm6, mm2
punpcklwd mm2, mm3
punpckhwd mm6, mm3
movq mm1, mm0
mov INP, [block]
punpckldq mm0, mm2
movq mm3, mm4
punpckhdq mm1, mm2
movq [INP+ROW_STRIDE*0], mm0
punpckldq mm4, mm6
movq mm0, [OUT+ROW_STRIDE*4+8]
punpckhdq mm3, mm6
movq [INP+ROW_STRIDE*2], mm4
movq mm4, mm0
movq [INP+ROW_STRIDE*1], mm1
movq mm1, [OUT+ROW_STRIDE*5+8]
movq [INP+ROW_STRIDE*3], mm3
punpcklwd mm0, mm1
movq mm2, [OUT+ROW_STRIDE*6+8]
punpckhwd mm4, mm1
movq mm3, [OUT+ROW_STRIDE*7+8]
movq mm6, mm2
punpcklwd mm2, mm3
movq mm1, mm0
punpckhwd mm6, mm3
movq mm3, mm4
punpckldq mm0, mm2
punpckhdq mm1, mm2
movq [INP+ROW_STRIDE*4+8], mm0
punpckldq mm4, mm6
movq mm0, [OUT+ROW_STRIDE*4]
punpckhdq mm3, mm6
movq [INP+ROW_STRIDE*6+8], mm4
movq mm4, mm0
movq [INP+ROW_STRIDE*5+8], mm1
movq mm1, [OUT+ROW_STRIDE*5]
movq [INP+ROW_STRIDE*7+8], mm3
punpcklwd mm0, mm1
movq mm2, [OUT+ROW_STRIDE*6]
punpckhwd mm4, mm1
movq mm3, [OUT+ROW_STRIDE*7]
movq mm6, mm2
punpcklwd mm2, mm3
movq mm1, mm0
punpckhwd mm6, mm3
movq mm3, mm4
punpckldq mm0, mm2
punpckhdq mm1, mm2
movq [INP+ROW_STRIDE*0+8], mm0
punpckldq mm4, mm6
movq mm0, [OUT+ROW_STRIDE*0+8]
punpckhdq mm3, mm6
movq [INP+ROW_STRIDE*2+8], mm4
movq mm4, mm0
movq [INP+ROW_STRIDE*1+8], mm1
movq mm1, [OUT + ROW_STRIDE*1+8]
movq [INP+ROW_STRIDE*3+8], mm3
punpcklwd mm0, mm1
movq mm2, [OUT+ROW_STRIDE*2+8]
punpckhwd mm4, mm1
movq mm3, [OUT+ROW_STRIDE*3+8]
movq mm6, mm2
punpcklwd mm2, mm3
movq mm1, mm0
punpckhwd mm6, mm3
movq mm3, mm4
punpckldq mm0, mm2
punpckhdq mm1, mm2
movq [INP+ROW_STRIDE*4], mm0
punpckldq mm4, mm6
movq [INP+ROW_STRIDE*5], mm1
punpckhdq mm3, mm6
movq [INP+ROW_STRIDE*6], mm4
movq [INP+ROW_STRIDE*7], mm3
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -