⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 testrules.c

📁 c4.5的源码决策树最全面最经典的版本
💻 C
字号:
/*************************************************************************//*									 *//*	Evaluatation of rulesets					 *//*	------------------------					 *//*									 *//*************************************************************************/#include "defns.i"#include "types.i"#include "extern.i"#include "rulex.i"/*************************************************************************//*									 *//*	Evaluate all rulesets						 *//*									 *//*************************************************************************/    EvaluateRulesets(DeleteRules)/*  ----------------  */    Boolean DeleteRules;{    short t;    ItemNo *Errors, Interpret();    float AvSize=0, AvErrs=0;    Boolean Final;    if ( TRIALS == 1 )    {	/*  Evaluate current ruleset as there is no composite ruleset  */	Interpret(0, MaxItem, DeleteRules, true, true);	return;    }    Errors = (ItemNo *) malloc((TRIALS+1) * sizeof(ItemNo));    ForEach(t, 0, TRIALS)    {	NRules    = PRSet[t].SNRules;	Rule      = PRSet[t].SRule;	RuleIndex = PRSet[t].SRuleIndex;	DefaultClass = PRSet[t].SDefaultClass;	if ( t < TRIALS )	{	    printf("\nRuleset %d:\n", t);	}	else	{	    printf("\nComposite ruleset:\n");	}	Final = (t == TRIALS);	Errors[t] = Interpret(0, MaxItem, DeleteRules, Final, Final);	AvSize += NRules;	AvErrs += Errors[t];	if ( DeleteRules )	{	    PRSet[t].SNRules = NRules;	}    }    /*  Print report  */    printf("\n");    printf("Trial   Size      Errors\n");    printf("-----   ----      ------\n");    ForEach(t, 0, TRIALS)    {	if ( t < TRIALS )	{	    printf("%4d", t);	}	else	{	    printf("  **");	}	printf("    %4d  %3d(%4.1f%%)\n",	      PRSet[t].SNRules, Errors[t], 100 * Errors[t] / (MaxItem+1.0));    }    AvSize /= TRIALS + 1;    AvErrs /= TRIALS + 1;    printf("\t\t\t\tAv size = %.1f,  av errors = %.1f (%.1f%%)\n",	   AvSize, AvErrs, 100 * AvErrs / (MaxItem+1.0));}/*************************************************************************//*									 *//*	Evaluate current ruleset					 *//*									 *//*************************************************************************/float	Confidence;		/* certainty factor of fired rule */				/* (set by BestRuleIndex) */ItemNo Interpret(Fp, Lp, DeleteRules, CMInfo, Arrow)/*     ---------  */    ItemNo Fp, Lp;    Boolean DeleteRules, CMInfo, Arrow;{    ItemNo i, Tested=0, Errors=0, *Better, *Worse, *ConfusionMat;    Boolean FoundRule;    ClassNo AssignedClass, AltClass;    Attribute Att;    RuleNo p, Bestr, ri, ri2, riDrop=0, BestRuleIndex();    float ErrorRate, BestRuleConfidence;    if ( CMInfo )    {	ConfusionMat = (ItemNo *) calloc((MaxClass+1)*(MaxClass+1), sizeof(ItemNo));    }    ForEach(ri, 1, NRules)    {	p = RuleIndex[ri];	Rule[p].Used = Rule[p].Incorrect = 0;    }    Better = (ItemNo *) calloc(NRules+1, sizeof(ItemNo));    Worse  = (ItemNo *) calloc(NRules+1, sizeof(ItemNo));    ForEach(i, Fp, Lp)    {	/*  Find first choice for rule for this item  */	ri = BestRuleIndex(Item[i], 1);	Bestr = ( ri ? RuleIndex[ri] : 0 );	FoundRule = Bestr > 0;	if ( FoundRule )	{	    Rule[Bestr].Used++;	    AssignedClass =  Rule[Bestr].Rhs;	    BestRuleConfidence = Confidence;	    /*  Now find second choice  */	    ri2 = BestRuleIndex(Item[i], ri+1);	    AltClass = ( ri2 ? Rule[RuleIndex[ri2]].Rhs : DefaultClass );	    if ( AltClass != AssignedClass )	    {		if ( AssignedClass == Class(Item[i]) )		{		    Better[ri]++;		}		else		if ( AltClass == Class(Item[i]) )		{		    Worse[ri]++;		}	    }	}	else	{	    AssignedClass = DefaultClass;	}		if ( CMInfo )	{	    ConfusionMat[Class(Item[i])*(MaxClass+1)+AssignedClass]++;	}	Tested++;	if ( AssignedClass != Class(Item[i]) )	{	    Errors++;	    if ( FoundRule ) Rule[Bestr].Incorrect++;	    Verbosity(3)	    {	    	printf("\n");	    	ForEach(Att, 0, MaxAtt)	    	{	    	    printf("\t%s: ", AttName[Att]);	    	    if ( MaxAttVal[Att] )	    	    {	    		if ( DVal(Item[i],Att) )			{	    		    printf("%s\n", AttValName[Att][DVal(Item[i],Att)]);			}	    		else			{	    		    printf("?\n");			}	    	    }	    	    else	    	    {	    		if ( CVal(Item[i],Att) != Unknown )			{	    		    printf("%g\n", CVal(Item[i],Att));			}	    		else			{	    		    printf("?\n");			}	    	    }	    	}	    	printf("\t%4d:\tGiven class %s,", i, ClassName[Class(Item[i])]);	    	if ( FoundRule )	    	{	    	    printf(" rule %d [%.1f%%] gives class ",	    		    Bestr, 100 * BestRuleConfidence);	    	}	    	else		{	    	    printf(" default class ");		}	    	printf("%s\n", ClassName[AssignedClass]);	    }	}    }    printf("\nRule  Size  Error  Used  Wrong\t          Advantage\n");    printf(  "----  ----  -----  ----  -----\t          ---------\n");    ForEach(ri, 1, NRules)    {	p = RuleIndex[ri];	if ( Rule[p].Used > 0 )	{	    ErrorRate = Rule[p].Incorrect / (float) Rule[p].Used;	    printf("%4d%6d%6.1f%%%6d%7d (%.1f%%)\t%6d (%d|%d) \t%s\n",		    p, Rule[p].Size,		    100 * Rule[p].Error, Rule[p].Used, Rule[p].Incorrect,		    100 * ErrorRate,		    Better[ri]-Worse[ri], Better[ri], Worse[ri],		    ClassName[Rule[p].Rhs]);	    /*  See whether this rule should be dropped.  Note: can only drop		one rule at a time, because Better and Worse are affected  */	    if ( DeleteRules && ! riDrop && Worse[ri] > Better[ri] )	    {		riDrop = ri;	    }	}    }    cfree(Better);    cfree(Worse);    if ( riDrop )    {	printf("\nDrop rule %d\n", RuleIndex[riDrop]);	ForEach(ri, riDrop+1, NRules)	{	    RuleIndex[ri-1] = RuleIndex[ri];	}	NRules--;    	if ( CMInfo ) free(ConfusionMat);	return Interpret(Fp, Lp, DeleteRules, true, Arrow);    }    else    {	printf("\nTested %d, errors %d (%.1f%%)%s\n",	    Tested, Errors, 100 * Errors / (float) Tested,	    ( Arrow ? "   <<" : "" ));    }    if ( CMInfo )    {	PrintConfusionMatrix(ConfusionMat);	free(ConfusionMat);    }    return Errors;}/*************************************************************************//*									 *//*	Find the best rule for the given case, leaving probability       *//*      in Confidence							 *//*									 *//*************************************************************************/RuleNo BestRuleIndex(CaseDesc, Start)/*     ---------------  */    Description CaseDesc;    RuleNo Start;{    RuleNo r, ri;    float Strength();    ForEach(ri, Start, NRules)    {	r = RuleIndex[ri];	Confidence = Strength(Rule[r], CaseDesc);	if ( Confidence > 0.1 )	{	    return ri;	}    }    Confidence = 0.0;    return 0;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -