📄 hoeffding.h
字号:
/* Dimension.H
*
* Each example that we want to place in the decision tree has a value for
* each attribute. An attribute together with all the possible values for
* the attribute we call a dimension. The dimension class stores an
* attribute and its possible values, which is handy for various reasons.
*/
const int MAX_VALUES = 40; // Same as MAX_CHILDREN for a node.(v)
const int MAX_CHILDREN = 40; // Cannot be more than MAX_VALUES for a dimension
const int MAX_ATTRS = 40; // number of distinct attributes(d)
const int MAX_STRING = 100; //max string length
const int MAX_CLASSES = 20; // The maximum number of classes allowed
class Node;
class Example;
class Dimension {
friend istream& operator>>(istream &i, Dimension &d); //read a dimension from a file
//usually defined at the beginning of the file
char attribute[MAX_STRING]; //attribute name
public:
int num_values; // How many values this dimension has
char values[MAX_VALUES][MAX_STRING]; // The names of all values
int lookup(char temp[]); // Lookup the index of a given value name
char *get_attribute(); // Return attribute name
Dimension(); // Construct a Dimension object
~Dimension(); // Destroy this dimension
Dimension *next; // List of unused attributes
};
/* Example.H
*
* An example is an assignment of values to each possible attribute.
* An example has a classification value(classlabel).
*/
class Example {
friend ostream& operator<<(ostream &o, Example &e); // Print out the example
// char name[MAX_STRING]; // The name of this example
int *values; // Array of values. We use numbers to index
// into the symbols in the dimensions.
int my_class; // Which of the valid classifications this is.
public:
Example(istream& in); // Construct an example from a file
~Example(); // Destroy this example
int get_class(); // Get the class index of this example
int get_value(int dim); // Get the value for a certain dimension.
Example *next; // The next example in a linked list.
};
/* Decision.H
*
* This class is a container class for some globally available values,
* such as the valid dimensions and classes for this problem.
*/
class Decision {
friend ostream& operator<<(ostream &o, Decision &d); // Print out the tree
public:
static int num_classes; // The number of classes for this run
static char classes[MAX_CLASSES][MAX_STRING]; // Names for all classes
static int lookup_class(char temp[]); // Get the class index given the name
static int majority_class; // majority class in examples--------???????how to predict if
//the stream can't be seen at the start time
static int num_dimensions; // The number of dimensions for this run
static Dimension **dimensions; // Array of dimensions
static int lookup_attribute(int x, char temp[]); // Get the dimension index
Node *root; // The top of the decision tree
Decision(char *filename); // Construct a Decision given an info file
~Decision(); // Destroy the decision tree
void build_tree(); // Build the decision tree
};
/* Node.H
*
* The decision tree is built from nodes.
*
* To classify an example, we start at the node of the decision tree
* and work our way down until we reach a yes or no answer. Each
* node has some question to ask, and depending on the answer to that
* question, we choose one of the children. This "question" is called
* an attribute. We store a dimension with the node, because this lets
* us know the name of the attribute as well as all the possible values.
* Each different value as an "answer" to the attribute question would
* direct the search to a different child.
*
* Each node is also associated with one or more examples, if it is
* a leaf node. These examples are previous data that helped to build
* the tree.
*/
class Example;
class Dimension;
class Node {
Example *examples; // Start of a linked list of examples.
int num_examples; // The number of examples
int num_attrs; // Number of such attributes (as below)
int attributes[MAX_ATTRS]; // Attributes remaining for this subtree
int attribute; // The "question" for this node.
int major_class; // This node's class (LBH 3/96)
int num_children;
Node *children[MAX_CHILDREN]; // The children under this node
int splitter(); // Which dimension will node be split on?
double evaluate(int dim); // Metric for deciding splitting dimension
double disorder(int dim, int value); // Another metric, used by evaluate
void print_distribution(); // Print out the class distribution here
void partition(); // Break up the node given the split
public:
Node(); // Construct a node
~Node(); // Destroy a node
void add_example(Example *example); // Add an example to this node's set
void add_attribute(int attr); // Add attr to node's set (LBH 3/96)
void build_tree(int default_class); // Build decision subtree from this node
double disorder(int value); // Calculate a metric for disorder
void print(int depth); // Print the node with "depth" indentation
};
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -