⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sphere.cpp

📁 游戏编程精粹2第四章源码
💻 CPP
字号:
/* Copyright (C) John W. Ratcliff, 2001. 
 * All rights reserved worldwide.
 *
 * This software is provided "as is" without express or implied
 * warranties. You may freely copy and compile this source into
 * applications you distribute provided that the copyright text
 * below is included in the resulting source code, for example:
 * "Portions Copyright (C) John W. Ratcliff, 2001"
 */

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <assert.h>

#include "sphere.h"



Sphere::Set(const Vector3d<float> &center, float radius)
{
	mCenter = center;
	mRadius = radius;
	mRadius2 = radius*radius;
}


//ray-sphere intersection test from Graphics Gems p.388
// **NOTE** There is a bug in this Graphics Gem.  If the origin
// of the ray is *inside* the sphere being tested, it reports the
// wrong intersection location.  This code has a fix for the bug.
bool Sphere::RayIntersection(const Vector3d<float> &rayOrigin,
														 const Vector3d<float> &dir,
														 Vector3d<float> *intersect)
{
	//notation:
	//point E  = rayOrigin
	//point O  = sphere center

	Vector3d<float> EO = mCenter - rayOrigin;
  Vector3d<float> V = dir;
  float dist2 = EO.x*EO.x + EO.y*EO.y + EO.z * EO.z;
  // Bug Fix For Gem, if origin is *inside* the sphere, invert the
  // direction vector so that we get a valid intersection location.
  if ( dist2 < mRadius2 ) V*=-1;

	float v = EO.Dot(V);

	float disc = mRadius2 - (EO.Length2() - v*v);

	if (disc > 0.0f)
	{

		if ( intersect )
		{

		  float d = sqrtf(disc);

      float dist2 = rayOrigin.Distance2(mCenter);

      *intersect = rayOrigin + V*(v-d);

    }

		return true;
	}
	return false;
}

//
bool Sphere::RayIntersection(const Vector3d<float> &rayOrigin,
							 const Vector3d<float> &V,
							 float distance,
							 Vector3d<float> *intersect)
{
  Vector3d<float> sect;
  bool hit = RayIntersectionInFront(rayOrigin,V,&sect);

  if ( hit )
  {
    float d = rayOrigin.Distance2(sect);
    if ( d > (distance*distance) ) return false;
    if ( intersect ) *intersect = sect;
    return true;
  }
  return false;
}


bool Sphere::RayIntersectionInFront(const Vector3d<float> &rayOrigin,
														        const Vector3d<float> &V,
        														Vector3d<float> *intersect)
{
  Vector3d<float> sect;
  bool hit = RayIntersection(rayOrigin,V,&sect);

  if ( hit )
  {

    Vector3d<float> dir = sect - rayOrigin;

    float dot = dir.Dot(V);

    if ( dot >= 0  ) // then it's in front!
    {
      if ( intersect ) *intersect = sect;
      return true;
    }
  }
  return false;
}

void Sphere::Report(void)
{
}

/*
An Efficient Bounding Sphere
by Jack Ritter
from "Graphics Gems", Academic Press, 1990
*/

/* Routine to calculate tight bounding sphere over    */
/* a set of points in 3D */
/* This contains the routine find_bounding_sphere(), */
/* the struct definition, and the globals used for parameters. */
/* The abs() of all coordinates must be < BIGNUMBER */
/* Code written by Jack Ritter and Lyle Rains. */

#define BIGNUMBER 100000000.0  		/* hundred million */

void Sphere::Compute(const SphereInterface &source)
{

  Vector3d<float> xmin,xmax,ymin,ymax,zmin,zmax,dia1,dia2;

  /* FIRST PASS: find 6 minima/maxima points */
  xmin.Set(BIGNUMBER,BIGNUMBER,BIGNUMBER);
  xmax.Set(-BIGNUMBER,-BIGNUMBER,-BIGNUMBER);
  ymin.Set(BIGNUMBER,BIGNUMBER,BIGNUMBER);
  ymax.Set(-BIGNUMBER,-BIGNUMBER,-BIGNUMBER);
  zmin.Set(BIGNUMBER,BIGNUMBER,BIGNUMBER);
  zmax.Set(-BIGNUMBER,-BIGNUMBER,-BIGNUMBER);

  int count = source.GetVertexCount();

  for (int i=0; i<count; i++)
	{
    Vector3d<float> caller_p;
    source.GetVertex(i,caller_p);

  	if (caller_p.GetX()<xmin.GetX()) 	xmin = caller_p; /* New xminimum point */
  	if (caller_p.GetX()>xmax.GetX())	xmax = caller_p;
  	if (caller_p.GetY()<ymin.GetY())	ymin = caller_p;
  	if (caller_p.GetY()>ymax.GetY())	ymax = caller_p;
  	if (caller_p.GetZ()<zmin.GetZ())	zmin = caller_p;
  	if (caller_p.GetZ()>zmax.GetZ()) zmax = caller_p;
	}

  /* Set xspan = distance between the 2 points xmin & xmax (squared) */
  float dx = xmax.GetX() - xmin.GetX();
  float dy = xmax.GetY() - xmin.GetY();
  float dz = xmax.GetZ() - xmin.GetZ();
  float xspan = dx*dx + dy*dy + dz*dz;

  /* Same for y & z spans */
  dx = ymax.GetX() - ymin.GetX();
  dy = ymax.GetY() - ymin.GetY();
  dz = ymax.GetZ() - ymin.GetZ();
  float yspan = dx*dx + dy*dy + dz*dz;

  dx = zmax.GetX() - zmin.GetX();
  dy = zmax.GetY() - zmin.GetY();
  dz = zmax.GetZ() - zmin.GetZ();
  float zspan = dx*dx + dy*dy + dz*dz;

  /* Set points dia1 & dia2 to the maximally separated pair */
  dia1 = xmin;
  dia2 = xmax; /* assume xspan biggest */
  float maxspan = xspan;

  if (yspan>maxspan)
	{
	  maxspan = yspan;
  	dia1 = ymin;
  	dia2 = ymax;
	}

  if (zspan>maxspan)
	{
	  dia1 = zmin;
	  dia2 = zmax;
	}


  /* dia1,dia2 is a diameter of initial sphere */
  /* calc initial center */
  mCenter.SetX( (dia1.GetX()+dia2.GetX())*0.5f );
  mCenter.SetY( (dia1.GetY()+dia2.GetY())*0.5f );
  mCenter.SetZ( (dia1.GetZ()+dia2.GetZ())*0.5f );
  /* calculate initial radius**2 and radius */
  dx = dia2.GetX()-mCenter.GetX(); /* x component of radius vector */
  dy = dia2.GetY()-mCenter.GetY(); /* y component of radius vector */
  dz = dia2.GetZ()-mCenter.GetZ(); /* z component of radius vector */
  mRadius2 = dx*dx + dy*dy + dz*dz;
  mRadius = float(sqrt(mRadius2));

  /* SECOND PASS: increment current sphere */

  for (i=0; i<count; i++)
	{
    Vector3d<float> caller_p;
    source.GetVertex(i,caller_p);
  	dx = caller_p.GetX()-mCenter.GetX();
	  dy = caller_p.GetY()-mCenter.GetY();
  	dz = caller_p.GetZ()-mCenter.GetZ();
	  float old_to_p_sq = dx*dx + dy*dy + dz*dz;
  	if (old_to_p_sq > mRadius2) 	/* do r**2 test first */
		{ 	/* this point is outside of current sphere */
	  	float old_to_p = float(sqrt(old_to_p_sq));
		  /* calc radius of new sphere */
  		mRadius = (mRadius + old_to_p) * 0.5f;
	  	mRadius2 = mRadius*mRadius; 	/* for next r**2 compare */
  		float old_to_new = old_to_p - mRadius;
	  	/* calc center of new sphere */
      float recip = 1.0f /old_to_p;

  		float cx = (mRadius*mCenter.GetX() + old_to_new*caller_p.GetX()) * recip;
	  	float cy = (mRadius*mCenter.GetY() + old_to_new*caller_p.GetY()) * recip;
		  float cz = (mRadius*mCenter.GetZ() + old_to_new*caller_p.GetZ()) * recip;

      mCenter.Set(cx,cy,cz);
		}
	}
}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -