📄 bridsim.m
字号:
function y=bridsim(u)%Simulation of the liquid bridge%4-dimensional weakly nonlinear system with two inputs and two outputs.%Nonlinearities are present in the state transition matrix as saturating x^3%terms and as the term corresponding to the crossmixing of the inputs (u1*u2) % V. Petrov 6-10-97, CNLD% e-mail: Val.Petrov@chaos.ph.utexas.edu%% Copyright (c) 1997, 1998 The University of Texas at Austinpert_delay=1; %Perturbation propagation delay. Adjustable between 0 and 2 global Ksi resp;if(length(Ksi)==0) %Initialize internal coordinates Ksi=ones(4,1); Ksi(3:4)=-Ksi(3:4); resp=0*ones(3,2);end% Define state transition matices (A-linear, B,C-nonlinear)I=sqrt(-1);A = diag([ 0.05-I*0.8 0.05+I*0.8 0.05+I*0.8 0.05-I*0.8]);% The coefficient 0.03 here defines the nonlinearity of the system.% Try to increase it and see how control degrades due to% the poorer approximation. Collect more data points% to restore the convergence.B=-0.1*diag([ 1+I*0.1 1.0-I*0.1 1+I*0.1 1.0-I*0.1]);% Cross-coupling matrixC=0.1*[0 0 0 1; 0 0 1 0; 0 1 0 0; 1 0 0 0];%Fixed point shift vector for two perturbationsG1=[0.2 0.2 0.1 0.1];G2=[0.4 0.4 -0.3 -0.3];%Nonlinear crossmixing of inputsG3=[0.01 0.01 -0.02 -0.02];ro=[1,1,0.5,0.5];Ksif0=[0.1;0.1;0.1;0.1];% Simulate the delay of the perturbation here resp(3,:)=resp(2,:); resp(2,:)=resp(1,:); resp(1,:)=u'+1e-5*randn(1,2);%Perturbation causes linear shift of the fixed point Ksif=Ksif0 + G1'.*resp(1+pert_delay,1) + G2'.*resp(1+pert_delay,2)... + G3'.*resp(1+pert_delay,1)*resp(1+pert_delay,2);%Simulation of continius system: 50 time steps per one sampling iteration%Nonlinearity comes only as a simple 2nd order diagonal term for i = 1:50 Ksi=Ksi + 0.03*(Ksif + (A+B*diag(abs(Ksi-Ksif))^2+C*diag(Ksi-Ksif))*(Ksi-Ksif)); end y(1)=ro*Ksi+1e-5*randn; y(2)=[1+I 1-I 1 1]*Ksi+1e-5*randn; y=y';
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -