📄 example_28xecanback2back.c
字号:
//
// TMDX ALPHA RELEASE
// Intended for product evaluation purposes
//
//###########################################################################
//
// FILE: Example_28xECanBack2Back.c
//
// TITLE: DSP28 eCAN Back-to-back transmission and reception in
// SELF-TEST mode
//
// ASSUMPTIONS:
//
// This program requires the DSP28 header files. To compile the
// program as is, it should reside in the DSP28/examples/ecan_back2back
// sub-directory.
//
// As supplied, this project is configured for "boot to H0" operation.
//
// DESCRIPTION:
//
// This test transmits data back-to-back at high speed without stopping.
// The received data is verified. Any error is flagged.
// MBX0 transmits to MBX16, MBX1 transmits to MBX17 and so on....
// This program illustrates the use of self-test mode
//
//###########################################################################
//
// Ver | dd mmm yyyy | Who | Description of changes
// =====|=============|======|===============================================
// 0.58| 29 Jun 2002 | H.J. | From H.J.'s original source
//###########################################################################
// Step 0. Include required header files
// DSP28_Device.h: device specific definitions #include statements for
// all of the peripheral .h definition files.
// DSP28_Example.h is specific for the given example.
#include "DSP28_Device.h"
// Prototype statements for functions found within this file.
void mailbox_check(int32 T1, int32 T2, int32 T3);
void mailbox_read(int16 i);
// Global variable for this example
Uint32 ErrorCount;
Uint32 MessageReceivedCount;
Uint32 TestMbox1 = 0;
Uint32 TestMbox2 = 0;
Uint32 TestMbox3 = 0;
void main(void)
{
Uint16 j;
// eCAN control registers require read/write access using 32-bits. Thus we
// will create a set of shadow registers for this example. These shadow
// registers will be used to make sure the access is 32-bits and not 16.
struct ECAN_REGS ECanaShadow;
// Step 1. Initialize System Control registers, PLL, WatchDog, Clocks to default state:
// For this example, this function is found in Example_WatchdogSysCtrl.c
InitSysCtrl();
// Step 2. Select GPIO for the device or for the specific application:
// This function is found in the DSP28_Gpio.c file.
// InitGpio(); // Skip this and init GPIO for this example here
// Configure CAN pins using GPIO regs here
EALLOW;
GpioMuxRegs.GPFMUX.bit.CANTXA_GPIOF6 = 1;
GpioMuxRegs.GPFMUX.bit.CANRXA_GPIOF7 = 1;
EDIS;
// Step 3. Initialize PIE vector table:
// PIE not used for this example
// Step 4. Initialize all the Device Peripherals to a known state:
// This function is found in DSP28_InitPeripherals.c
// InitPeripherals(); // Not required for this example.
// Step 5. User specific functions, Reassign vectors (optional), Enable Interrupts:
MessageReceivedCount = 0;
ErrorCount = 0;
// eCAN control registers require 32-bit access.
// If you want to write to a single bit, the compiler may break this
// access into a 16-bit access. One solution, that is presented here,
// is to use a shadow register to force the 32-bit access.
// Read the entire register into a shadow register. This access
// will be 32-bits. Change the desired bit and copy the value back
// to the eCAN register with a 32-bit write.
// Configure the eCAN RX and TX pins for eCAN transmissions
EALLOW;
ECanaShadow.CANTIOC.all = ECanaRegs.CANTIOC.all;
ECanaShadow.CANTIOC.bit.TXFUNC = 1;
ECanaRegs.CANTIOC.all = ECanaShadow.CANTIOC.all;
ECanaShadow.CANRIOC.all = ECanaRegs.CANRIOC.all;
ECanaShadow.CANRIOC.bit.RXFUNC = 1;
ECanaRegs.CANRIOC.all = ECanaShadow.CANRIOC.all;
EDIS;
// Disable all Mailboxes
// Since this write is to the entire register (instead of a bit
// field) a shadow register is not required.
ECanaRegs.CANME.all = 0;
// Mailboxs can be written to 16-bits or 32-bits at a time
// Write to the MSGID field of TRANSMIT mailboxes MBOX0 - 15
ECanaMboxes.MBOX0.MID.all = 0x9555AAA0;
ECanaMboxes.MBOX1.MID.all = 0x9555AAA1;
ECanaMboxes.MBOX2.MID.all = 0x9555AAA2;
ECanaMboxes.MBOX3.MID.all = 0x9555AAA3;
ECanaMboxes.MBOX4.MID.all = 0x9555AAA4;
ECanaMboxes.MBOX5.MID.all = 0x9555AAA5;
ECanaMboxes.MBOX6.MID.all = 0x9555AAA6;
ECanaMboxes.MBOX7.MID.all = 0x9555AAA7;
ECanaMboxes.MBOX8.MID.all = 0x9555AAA8;
ECanaMboxes.MBOX9.MID.all = 0x9555AAA9;
ECanaMboxes.MBOX10.MID.all = 0x9555AAAA;
ECanaMboxes.MBOX11.MID.all = 0x9555AAAB;
ECanaMboxes.MBOX12.MID.all = 0x9555AAAC;
ECanaMboxes.MBOX13.MID.all = 0x9555AAAD;
ECanaMboxes.MBOX14.MID.all = 0x9555AAAE;
ECanaMboxes.MBOX15.MID.all = 0x9555AAAF;
// Write to the MSGID field of RECEIVE mailboxes MBOX16 - 31
ECanaMboxes.MBOX16.MID.all = 0x9555AAA0;
ECanaMboxes.MBOX17.MID.all = 0x9555AAA1;
ECanaMboxes.MBOX18.MID.all = 0x9555AAA2;
ECanaMboxes.MBOX19.MID.all = 0x9555AAA3;
ECanaMboxes.MBOX20.MID.all = 0x9555AAA4;
ECanaMboxes.MBOX21.MID.all = 0x9555AAA5;
ECanaMboxes.MBOX22.MID.all = 0x9555AAA6;
ECanaMboxes.MBOX23.MID.all = 0x9555AAA7;
ECanaMboxes.MBOX24.MID.all = 0x9555AAA8;
ECanaMboxes.MBOX25.MID.all = 0x9555AAA9;
ECanaMboxes.MBOX26.MID.all = 0x9555AAAA;
ECanaMboxes.MBOX27.MID.all = 0x9555AAAB;
ECanaMboxes.MBOX28.MID.all = 0x9555AAAC;
ECanaMboxes.MBOX29.MID.all = 0x9555AAAD;
ECanaMboxes.MBOX30.MID.all = 0x9555AAAE;
ECanaMboxes.MBOX31.MID.all = 0x9555AAAF;
// Configure Mailboxes 0-15 as Tx, 16-31 as Rx
// Since this write is to the entire register (instead of a bit
// field) a shadow register is not required.
ECanaRegs.CANMD.all = 0xFFFF0000;
// Enable all Mailboxes */
// Since this write is to the entire register (instead of a bit
// field) a shadow register is not required.
ECanaRegs.CANME.all = 0xFFFFFFFF;
// Specify that 8 bits will be sent/received
ECanaMboxes.MBOX0.MCF.bit.DLC = 8;
ECanaMboxes.MBOX1.MCF.bit.DLC = 8;
ECanaMboxes.MBOX2.MCF.bit.DLC = 8;
ECanaMboxes.MBOX3.MCF.bit.DLC = 8;
ECanaMboxes.MBOX4.MCF.bit.DLC = 8;
ECanaMboxes.MBOX5.MCF.bit.DLC = 8;
ECanaMboxes.MBOX6.MCF.bit.DLC = 8;
ECanaMboxes.MBOX7.MCF.bit.DLC = 8;
ECanaMboxes.MBOX8.MCF.bit.DLC = 8;
ECanaMboxes.MBOX9.MCF.bit.DLC = 8;
ECanaMboxes.MBOX10.MCF.bit.DLC = 8;
ECanaMboxes.MBOX11.MCF.bit.DLC = 8;
ECanaMboxes.MBOX12.MCF.bit.DLC = 8;
ECanaMboxes.MBOX13.MCF.bit.DLC = 8;
ECanaMboxes.MBOX14.MCF.bit.DLC = 8;
ECanaMboxes.MBOX15.MCF.bit.DLC = 8;
// No remote frame is requested
ECanaMboxes.MBOX0.MCF.bit.RTR = 0; // Since RTR bit is undefined upon reset,
ECanaMboxes.MBOX1.MCF.bit.RTR = 0; // it must be initialized to the proper
ECanaMboxes.MBOX2.MCF.bit.RTR = 0; // value
ECanaMboxes.MBOX3.MCF.bit.RTR = 0;
ECanaMboxes.MBOX4.MCF.bit.RTR = 0;
ECanaMboxes.MBOX5.MCF.bit.RTR = 0;
ECanaMboxes.MBOX6.MCF.bit.RTR = 0;
ECanaMboxes.MBOX7.MCF.bit.RTR = 0;
ECanaMboxes.MBOX8.MCF.bit.RTR = 0;
ECanaMboxes.MBOX9.MCF.bit.RTR = 0;
ECanaMboxes.MBOX10.MCF.bit.RTR = 0;
ECanaMboxes.MBOX11.MCF.bit.RTR = 0;
ECanaMboxes.MBOX12.MCF.bit.RTR = 0;
ECanaMboxes.MBOX13.MCF.bit.RTR = 0;
ECanaMboxes.MBOX14.MCF.bit.RTR = 0;
ECanaMboxes.MBOX15.MCF.bit.RTR = 0;
// Write to the mailbox RAM field of MBOX0 - 15
ECanaMboxes.MBOX0.MDRL.all = 0x9555AAA0;
ECanaMboxes.MBOX0.MDRH.all = 0x89ABCDEF;
ECanaMboxes.MBOX1.MDRL.all = 0x9555AAA1;
ECanaMboxes.MBOX1.MDRH.all = 0x89ABCDEF;
ECanaMboxes.MBOX2.MDRL.all = 0x9555AAA2;
ECanaMboxes.MBOX2.MDRH.all = 0x89ABCDEF;
ECanaMboxes.MBOX3.MDRL.all = 0x9555AAA3;
ECanaMboxes.MBOX3.MDRH.all = 0x89ABCDEF;
ECanaMboxes.MBOX4.MDRL.all = 0x9555AAA4;
ECanaMboxes.MBOX4.MDRH.all = 0x89ABCDEF;
ECanaMboxes.MBOX5.MDRL.all = 0x9555AAA5;
ECanaMboxes.MBOX5.MDRH.all = 0x89ABCDEF;
ECanaMboxes.MBOX6.MDRL.all = 0x9555AAA6;
ECanaMboxes.MBOX6.MDRH.all = 0x89ABCDEF;
ECanaMboxes.MBOX7.MDRL.all = 0x9555AAA7;
ECanaMboxes.MBOX7.MDRH.all = 0x89ABCDEF;
ECanaMboxes.MBOX8.MDRL.all = 0x9555AAA8;
ECanaMboxes.MBOX8.MDRH.all = 0x89ABCDEF;
ECanaMboxes.MBOX9.MDRL.all = 0x9555AAA9;
ECanaMboxes.MBOX9.MDRH.all = 0x89ABCDEF;
ECanaMboxes.MBOX10.MDRL.all = 0x9555AAAA;
ECanaMboxes.MBOX10.MDRH.all = 0x89ABCDEF;
ECanaMboxes.MBOX11.MDRL.all = 0x9555AAAB;
ECanaMboxes.MBOX11.MDRH.all = 0x89ABCDEF;
ECanaMboxes.MBOX12.MDRL.all = 0x9555AAAC;
ECanaMboxes.MBOX12.MDRH.all = 0x89ABCDEF;
ECanaMboxes.MBOX13.MDRL.all = 0x9555AAAD;
ECanaMboxes.MBOX13.MDRH.all = 0x89ABCDEF;
ECanaMboxes.MBOX14.MDRL.all = 0x9555AAAE;
ECanaMboxes.MBOX14.MDRH.all = 0x89ABCDEF;
ECanaMboxes.MBOX15.MDRL.all = 0x9555AAAF;
ECanaMboxes.MBOX15.MDRH.all = 0x89ABCDEF;
// Since this write is to the entire register (instead of a bit
// field) a shadow register is not required.
EALLOW;
ECanaRegs.CANMIM.all = 0xFFFFFFFF;
// Request permission to change the configuration registers
ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
ECanaShadow.CANMC.bit.CCR = 1;
ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
EDIS;
// Wait until the CPU has been granted permission to change the
// configuration registers
do
{
ECanaShadow.CANES.all = ECanaRegs.CANES.all;
} while(ECanaShadow.CANES.bit.CCE != 1 ); // Wait for CCE bit to be set..
// Configure the eCAN timing
EALLOW;
ECanaShadow.CANBTC.all = ECanaRegs.CANBTC.all;
ECanaShadow.CANBTC.bit.BRP = 9; // (BRP + 1) = 10 feeds a 15 MHz CAN clock
ECanaShadow.CANBTC.bit.TSEG2 = 5 ; // to the CAN module. (150 / 10 = 15)
ECanaShadow.CANBTC.bit.TSEG1 = 7; // Bit time = 15
ECanaRegs.CANBTC.all = ECanaShadow.CANBTC.all;
ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
ECanaShadow.CANMC.bit.CCR = 0 ; // Set CCR = 0
ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
EDIS;
// Wait until the CPU no longer has permission to change the
// configuration registers
do
{
ECanaShadow.CANES.all = ECanaRegs.CANES.all;
} while(ECanaShadow.CANES.bit.CCE != 0 ); // Wait for CCE bit to be cleared..
// Configure the eCAN for self test mode
// Enable the enhanced features of the eCAN.
EALLOW;
ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
ECanaShadow.CANMC.bit.STM = 1; // Configure CAN for self-test mode
ECanaShadow.CANMC.bit.SCM = 1; // eCAN mode (reqd to access 32 mailboxes)
ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
EDIS;
// Begin transmitting
while(1)
{
ECanaRegs.CANTRS.all = 0x0000FFFF; // Set TRS for all transmit mailboxes
while(ECanaRegs.CANTA.all != 0x0000FFFF ) {} // Wait for all TAn bits to be set..
ECanaRegs.CANTA.all = 0x0000FFFF; // Clear all TAn
MessageReceivedCount++;
//Read from Receive mailboxes and begin checking for data */
for(j=0; j<16; j++) // Read & check 16 mailboxes
{
mailbox_read(j); // This func reads the indicated mailbox data
mailbox_check(TestMbox1,TestMbox2,TestMbox3); // Checks the received data
}
}
}
// This function reads out the contents of the indicated
// by the Mailbox number (MBXnbr).
void mailbox_read(int16 MBXnbr)
{
volatile struct MBOX *Mailbox;
Mailbox = &ECanaMboxes.MBOX0 + MBXnbr;
TestMbox1 = Mailbox->MDRL.all; // = 0x9555AAAn (n is the MBX number)
TestMbox2 = Mailbox->MDRH.all; // = 0x89ABCDEF (a constant)
TestMbox3 = Mailbox->MID.all; // = 0x9555AAAn (n is the MBX number)
} // MID of a rcv MBX is transmitted as the MDRL data.
void mailbox_check(int32 T1, int32 T2, int32 T3)
{
if((T1 != T3) || ( T2 != 0x89ABCDEF))
{
ErrorCount++;
}
}
//===========================================================================
// No more.
//===========================================================================
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -