⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 loglike.m

📁 含有多种ICA算法的eeglab工具箱
💻 M
字号:
% loglike() - log likehood function to estimate dependence between components%% Usage: f = loglike(W, S);% % Computation of the log-likelihood function under the model% that the ICs are 1/cosh(s) distributed (according to the tanh% nonlinearity in ICA). It does not exactly match for the logistic% nonlinearity, but should be a decent approximation%% negative log likelihood function% f = -( log(abs(det(W))) - sum(sum(log( cosh(S) )))/N - M*log(pi) );%% With these meanings:% W: total unmixing matrix, ie, icaweights*icasphere% S: 2-dim Matrix of source estimates% N: number of time points% M: number of components%% Author: Arnaud Delorme and Jorn Anemullerfunction f=loglike(W, S);        M = size(W,1);    if ndims(S) == 3        S = reshape(S, size(S,1), size(S,3)*size(S,2));     end;    N = size(S,2);        % detect infinite and remove them    tmpcoh = log( cosh(S) );    tmpinf = find(isinf(tmpcoh));    tmpcoh(tmpinf) = [];    N = (N*M-length(tmpinf))/M;        f=-( log(abs(det(W))) - sum(sum(tmpcoh))/N - M*log(pi) );

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -