⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 binica.sc

📁 含有多种ICA算法的eeglab工具箱
💻 SC
字号:
# ica - Perform Independent Component Analysis, standalone-version#       Master .sc file for binica - do not alter.##   Run the ICA algorithm of Bell & Sejnowski (1996) or the extended-ICA #   of Lee, Girolami & Sejnowski (1998). Original Matlab code: Scott Makeig,#   Tony Bell, et al.; C++ code: Sigurd Enghoff, CNL / Salk Institute 7/98#   Use the MATLAB binica() routine##   Usage:   >> [wts,sph] = binica(data,[runica() args]);##   Contacts: {scott,terry,tony,tewon,jung}@salk.edu## Required variables:#     DataFile     XXX       # Input data to decompose (floats multiplexed                           #   by channel (i.e., chan1, chan2, ...))    chans        31        # Number of data channels (= data columns)     frames       768       # Number of data points per epoch (= data rows)##   epochs       436       # Number of epochs# 	FrameWindow  20        # Number of frames per window# 	FrameStep    4         # Number of frames to step per window# 	EpochWindow  100       # Number of epochs per window# 	EpochStep    25        # Number of epochs to step per window# 	Baseline     25        # Number of data points contained in baseline#    WeightsOutFile binica.wts  # Output ICA weight matrix (floats)    SphereFile     binica.sph  # Output sphering matrix (floats)# # Processing options:#     sphering     on        # Flag sphering of data (on/off)   {default: on}    bias         on        # Perform bias adjustment (on/off) {default: on}    extended     0         # Perform "extended-ICA" using tnah() with kurtosis                           #  estimation every N training blocks. If N < 0,                           #  fix number of sub-Gaussian components to -N                            #  {default|0: off}    pca          0         # Decompose a principal component subspace of                           #  the data. Retain this many PCs. {default|0: all}# Optional input variables:# #  WeightsInFile [] # Starting ICA weight matrix (nchans,ncomps)                           #  {default: identity or sphering matrix}    lrate        1.0e-4    # Initial ICA learning rate (float << 1)                           #  {default: heuristic ~5e-4}    blocksize    0         # ICA block size (integer << datalength)                            #  {default: heuristic fraction of log data length}    stop         1.0e-6    # Stop training when weight-change < this value                           #  {default: heuristic ~0.000001}    maxsteps     512       # Max. number of ICA training steps {default: 128}    posact       on        # Make each component activation net-positive                           # (on/off) {default: on}    annealstep   0.98      # Annealing factor (range (0,1]) - controls                            #  the speed of convergence.    annealdeg    60        # Angledelta threshold for annealing {default: 60}    momentum     0       # Momentum gain (range [0,1])      {default: 0}    verbose      on        # Give ascii messages (on/off) {default: on}# # Optional outputs:# #  ActivationsFile data.act # Activations of each component (ncomps,points)#  BiasFile      data.bs   # Bias weights (ncomps,1)#  SignFile      data.sgn  # Signs designating (-1) sub- and (1) super-Gaussian                            #  components (ncomps,1)## Note that the input data file(s) must be native floats.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -