📄 binica.sc
字号:
# ica - Perform Independent Component Analysis, standalone-version# Master .sc file for binica - do not alter.## Run the ICA algorithm of Bell & Sejnowski (1996) or the extended-ICA # of Lee, Girolami & Sejnowski (1998). Original Matlab code: Scott Makeig,# Tony Bell, et al.; C++ code: Sigurd Enghoff, CNL / Salk Institute 7/98# Use the MATLAB binica() routine## Usage: >> [wts,sph] = binica(data,[runica() args]);## Contacts: {scott,terry,tony,tewon,jung}@salk.edu## Required variables:# DataFile XXX # Input data to decompose (floats multiplexed # by channel (i.e., chan1, chan2, ...)) chans 31 # Number of data channels (= data columns) frames 768 # Number of data points per epoch (= data rows)## epochs 436 # Number of epochs# FrameWindow 20 # Number of frames per window# FrameStep 4 # Number of frames to step per window# EpochWindow 100 # Number of epochs per window# EpochStep 25 # Number of epochs to step per window# Baseline 25 # Number of data points contained in baseline# WeightsOutFile binica.wts # Output ICA weight matrix (floats) SphereFile binica.sph # Output sphering matrix (floats)# # Processing options:# sphering on # Flag sphering of data (on/off) {default: on} bias on # Perform bias adjustment (on/off) {default: on} extended 0 # Perform "extended-ICA" using tnah() with kurtosis # estimation every N training blocks. If N < 0, # fix number of sub-Gaussian components to -N # {default|0: off} pca 0 # Decompose a principal component subspace of # the data. Retain this many PCs. {default|0: all}# Optional input variables:# # WeightsInFile [] # Starting ICA weight matrix (nchans,ncomps) # {default: identity or sphering matrix} lrate 1.0e-4 # Initial ICA learning rate (float << 1) # {default: heuristic ~5e-4} blocksize 0 # ICA block size (integer << datalength) # {default: heuristic fraction of log data length} stop 1.0e-6 # Stop training when weight-change < this value # {default: heuristic ~0.000001} maxsteps 512 # Max. number of ICA training steps {default: 128} posact on # Make each component activation net-positive # (on/off) {default: on} annealstep 0.98 # Annealing factor (range (0,1]) - controls # the speed of convergence. annealdeg 60 # Angledelta threshold for annealing {default: 60} momentum 0 # Momentum gain (range [0,1]) {default: 0} verbose on # Give ascii messages (on/off) {default: on}# # Optional outputs:# # ActivationsFile data.act # Activations of each component (ncomps,points)# BiasFile data.bs # Bias weights (ncomps,1)# SignFile data.sgn # Signs designating (-1) sub- and (1) super-Gaussian # components (ncomps,1)## Note that the input data file(s) must be native floats.
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -